NADPH 氧化酶 2 的活性通过对含有 CaMKIIα 的 Cys30 和 Cys289 进行氧化还原修饰来破坏钙调蛋白/CaMKIIα 复合物:对帕金森病的影响。

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Filippo Pullara , Madison C. Forsmann , Ignacio J. General , Joseph C. Ayoob , Emily Furbee , Sandra L. Castro , Xiaoping Hu , J. Timothy Greenamyre , Roberto Di Maio
{"title":"NADPH 氧化酶 2 的活性通过对含有 CaMKIIα 的 Cys30 和 Cys289 进行氧化还原修饰来破坏钙调蛋白/CaMKIIα 复合物:对帕金森病的影响。","authors":"Filippo Pullara ,&nbsp;Madison C. Forsmann ,&nbsp;Ignacio J. General ,&nbsp;Joseph C. Ayoob ,&nbsp;Emily Furbee ,&nbsp;Sandra L. Castro ,&nbsp;Xiaoping Hu ,&nbsp;J. Timothy Greenamyre ,&nbsp;Roberto Di Maio","doi":"10.1016/j.redox.2024.103254","DOIUrl":null,"url":null,"abstract":"<div><p>Ca<sup>2+</sup>/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca<sup>2+</sup> homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca<sup>2+</sup>/CaM, thus impeding the formation of the CaMKIIα:Ca<sup>2+</sup>/CaM complex, essential for a proper modulation of CaMKIIα kinase activity. Our subsequent <em>in vitro</em> investigations confirmed the computational predictions, specifically implicating Cys30 and Cys289 residues in impairing CaMKIIα:Ca<sup>2+</sup>/CaM interaction. We observed CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption in dopamine (DA) nigrostriatal neurons of post-mortem Parkinson's disease (PD) patients' specimens, addressing the high relevance of this event in the disease. CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption was also observed in both <em>in vitro</em> and <em>in vivo</em> rotenone models of PD, where this phenomenon was associated with CaMKIIα kinase hyperactivity. Moreover, we observed that, NADPH oxidase 2 (NOX2), a major enzymatic generator of superoxide anion (O<sub>2</sub><sup>●-</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in the brain with implications in PD pathogenesis, is responsible for CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption associated to a stable Ca<sup>2+</sup>CAM-independent CaMKIIα kinase activity and intracellular Ca<sup>2+</sup> accumulation. The present study highlights the importance of oxidative stress, in disturbing the delicate balance of CaMKIIα signaling in calcium dysregulation, offering novel insights into PD pathogenesis.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724002325/pdfft?md5=d3df8eed1e481a00998461cbd7d397bd&pid=1-s2.0-S2213231724002325-main.pdf","citationCount":"0","resultStr":"{\"title\":\"NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson's disease\",\"authors\":\"Filippo Pullara ,&nbsp;Madison C. Forsmann ,&nbsp;Ignacio J. General ,&nbsp;Joseph C. Ayoob ,&nbsp;Emily Furbee ,&nbsp;Sandra L. Castro ,&nbsp;Xiaoping Hu ,&nbsp;J. Timothy Greenamyre ,&nbsp;Roberto Di Maio\",\"doi\":\"10.1016/j.redox.2024.103254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ca<sup>2+</sup>/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca<sup>2+</sup> homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca<sup>2+</sup>/CaM, thus impeding the formation of the CaMKIIα:Ca<sup>2+</sup>/CaM complex, essential for a proper modulation of CaMKIIα kinase activity. Our subsequent <em>in vitro</em> investigations confirmed the computational predictions, specifically implicating Cys30 and Cys289 residues in impairing CaMKIIα:Ca<sup>2+</sup>/CaM interaction. We observed CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption in dopamine (DA) nigrostriatal neurons of post-mortem Parkinson's disease (PD) patients' specimens, addressing the high relevance of this event in the disease. CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption was also observed in both <em>in vitro</em> and <em>in vivo</em> rotenone models of PD, where this phenomenon was associated with CaMKIIα kinase hyperactivity. Moreover, we observed that, NADPH oxidase 2 (NOX2), a major enzymatic generator of superoxide anion (O<sub>2</sub><sup>●-</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in the brain with implications in PD pathogenesis, is responsible for CaMKIIα:Ca<sup>2+</sup>/CaM complex disruption associated to a stable Ca<sup>2+</sup>CAM-independent CaMKIIα kinase activity and intracellular Ca<sup>2+</sup> accumulation. The present study highlights the importance of oxidative stress, in disturbing the delicate balance of CaMKIIα signaling in calcium dysregulation, offering novel insights into PD pathogenesis.</p></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213231724002325/pdfft?md5=d3df8eed1e481a00998461cbd7d397bd&pid=1-s2.0-S2213231724002325-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724002325\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724002325","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大脑中的钙离子/钙调蛋白依赖性蛋白激酶 II α(CaMKIIα)信号在调节神经元钙离子平衡方面发挥着关键作用。它的功能失调与包括帕金森病(PD)在内的各种神经和神经退行性疾病有关。通过计算建模分析,我们预测 CaMKIIα 所含的两个重要半胱氨酸残基 Cys30 和 Cys289 可能会发生氧化还原修饰,影响 CaMKIIα 与 Ca2+/CaM 对接位点的正常功能,从而阻碍 CaMKIIα:Ca2+/CaM 复合物的形成,而这对于正确调节 CaMKIIα 激酶的活性至关重要。我们随后的体外研究证实了计算预测,特别是 Cys30 和 Cys289 残基与 CaMKIIα:Ca2+/CaM 的相互作用有关。我们在帕金森病(PD)患者死后标本的多巴胺(DA)黑质神经元中观察到了 CaMKIIα:Ca2+/CaM 复合物的破坏,从而揭示了这一事件与帕金森病的高度相关性。在帕金森病的体外和体内鱼藤酮模型中也观察到了 CaMKIIα:Ca2+/CaM 复合物的破坏,这种现象与 CaMKIIα 激酶亢进有关。此外,我们还观察到,NADPH氧化酶2(NOX2)是大脑中超氧化物阴离子(O2●-)和过氧化氢(H2O2)的主要酶生成物,对帕金森病的发病机制有影响,它是导致CaMKIIα:Ca2+/CaM复合物破坏的原因,与稳定的、不依赖于Ca2+CAM的CaMKIIα激酶活性和细胞内Ca2+积累有关。本研究强调了氧化应激在钙失调中干扰 CaMKIIα 信号转导微妙平衡的重要性,为了解帕金森病的发病机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson's disease

NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson's disease

Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca2+ homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca2+/CaM, thus impeding the formation of the CaMKIIα:Ca2+/CaM complex, essential for a proper modulation of CaMKIIα kinase activity. Our subsequent in vitro investigations confirmed the computational predictions, specifically implicating Cys30 and Cys289 residues in impairing CaMKIIα:Ca2+/CaM interaction. We observed CaMKIIα:Ca2+/CaM complex disruption in dopamine (DA) nigrostriatal neurons of post-mortem Parkinson's disease (PD) patients' specimens, addressing the high relevance of this event in the disease. CaMKIIα:Ca2+/CaM complex disruption was also observed in both in vitro and in vivo rotenone models of PD, where this phenomenon was associated with CaMKIIα kinase hyperactivity. Moreover, we observed that, NADPH oxidase 2 (NOX2), a major enzymatic generator of superoxide anion (O2●-) and hydrogen peroxide (H2O2) in the brain with implications in PD pathogenesis, is responsible for CaMKIIα:Ca2+/CaM complex disruption associated to a stable Ca2+CAM-independent CaMKIIα kinase activity and intracellular Ca2+ accumulation. The present study highlights the importance of oxidative stress, in disturbing the delicate balance of CaMKIIα signaling in calcium dysregulation, offering novel insights into PD pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信