Hayley G Law, Kimber L Stanhope, Wei Zhang, Munkhtuya Myagmarsuren, Zahraa M Jamshed, Muhammad A Khan, Heejung Bang, Peter J Havel, Lars Berglund, Byambaa Enkhmaa
{"title":"脂蛋白(a)与饮食:饮用含糖饮料会降低肥胖和超重成年人的脂蛋白(a)水平。","authors":"Hayley G Law, Kimber L Stanhope, Wei Zhang, Munkhtuya Myagmarsuren, Zahraa M Jamshed, Muhammad A Khan, Heejung Bang, Peter J Havel, Lars Berglund, Byambaa Enkhmaa","doi":"10.1016/j.jlr.2024.100588","DOIUrl":null,"url":null,"abstract":"<p><p>Lipoprotein(a) [Lp(a)] contributes to cardiovascular disease risk. A genetically determined size polymorphism in apolipoprotein(a) [apo(a)], determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Nongenetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (±SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. Following the 10-week intervention, Lp(a) level was reduced by an average (±SEM) of -13.2% ± 4.3% in all participants (P = 0.005); -15.3% ± 7.8% in the 15 participants who consumed glucose (P = 0.07); and -11.3% ± 4.5% in the 17 participants who consumed fructose (P = 0.02), without any significant difference in the effect between the two sugar groups. Relative changes in Lp(a) levels were similar across subgroups of lower versus higher baseline Lp(a) level or carrier versus noncarrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100588"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipoprotein(a) and diet: consuming sugar-sweetened beverages lowers lipoprotein(a) levels in obese and overweight adults.\",\"authors\":\"Hayley G Law, Kimber L Stanhope, Wei Zhang, Munkhtuya Myagmarsuren, Zahraa M Jamshed, Muhammad A Khan, Heejung Bang, Peter J Havel, Lars Berglund, Byambaa Enkhmaa\",\"doi\":\"10.1016/j.jlr.2024.100588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipoprotein(a) [Lp(a)] contributes to cardiovascular disease risk. A genetically determined size polymorphism in apolipoprotein(a) [apo(a)], determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Nongenetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (±SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. Following the 10-week intervention, Lp(a) level was reduced by an average (±SEM) of -13.2% ± 4.3% in all participants (P = 0.005); -15.3% ± 7.8% in the 15 participants who consumed glucose (P = 0.07); and -11.3% ± 4.5% in the 17 participants who consumed fructose (P = 0.02), without any significant difference in the effect between the two sugar groups. Relative changes in Lp(a) levels were similar across subgroups of lower versus higher baseline Lp(a) level or carrier versus noncarrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100588\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100588\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100588","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lipoprotein(a) and diet: consuming sugar-sweetened beverages lowers lipoprotein(a) levels in obese and overweight adults.
Lipoprotein(a) [Lp(a)] contributes to cardiovascular disease risk. A genetically determined size polymorphism in apolipoprotein(a) [apo(a)], determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Nongenetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (±SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. Following the 10-week intervention, Lp(a) level was reduced by an average (±SEM) of -13.2% ± 4.3% in all participants (P = 0.005); -15.3% ± 7.8% in the 15 participants who consumed glucose (P = 0.07); and -11.3% ± 4.5% in the 17 participants who consumed fructose (P = 0.02), without any significant difference in the effect between the two sugar groups. Relative changes in Lp(a) levels were similar across subgroups of lower versus higher baseline Lp(a) level or carrier versus noncarrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.