Reese Simmons, Hiroyasu Kameyama, Seiko Kubota, Yunguang Sun, John F Langenheim, Rana Ajeeb, Tristan S Shao, Samantha Ricketts, Anand C Annan, Natalie Stratemeier, Sophie J Williams, John R Clegg, Kar-Ming Fung, Inna Chervoneva, Hallgeir Rui, Takemi Tanaka
{"title":"将嵌入水凝胶的纳米粒子持续输送塞来昔布至活检腔,防止活检引起的乳腺癌转移。","authors":"Reese Simmons, Hiroyasu Kameyama, Seiko Kubota, Yunguang Sun, John F Langenheim, Rana Ajeeb, Tristan S Shao, Samantha Ricketts, Anand C Annan, Natalie Stratemeier, Sophie J Williams, John R Clegg, Kar-Ming Fung, Inna Chervoneva, Hallgeir Rui, Takemi Tanaka","doi":"10.1007/s10549-024-07410-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes.</p><p><strong>Methods: </strong>A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma.</p><p><strong>Results: </strong>A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice.</p><p><strong>Conclusion: </strong>This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452511/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustained delivery of celecoxib from nanoparticles embedded in hydrogel injected into the biopsy cavity to prevent biopsy-induced breast cancer metastasis.\",\"authors\":\"Reese Simmons, Hiroyasu Kameyama, Seiko Kubota, Yunguang Sun, John F Langenheim, Rana Ajeeb, Tristan S Shao, Samantha Ricketts, Anand C Annan, Natalie Stratemeier, Sophie J Williams, John R Clegg, Kar-Ming Fung, Inna Chervoneva, Hallgeir Rui, Takemi Tanaka\",\"doi\":\"10.1007/s10549-024-07410-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes.</p><p><strong>Methods: </strong>A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma.</p><p><strong>Results: </strong>A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice.</p><p><strong>Conclusion: </strong>This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10549-024-07410-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-024-07410-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sustained delivery of celecoxib from nanoparticles embedded in hydrogel injected into the biopsy cavity to prevent biopsy-induced breast cancer metastasis.
Purpose: We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes.
Methods: A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma.
Results: A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice.
Conclusion: This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.