Klara Papouskova, Olga Zimmermannova, Hana Sychrova
{"title":"其细胞内第一环的不同区域有助于主要酵母 K+ 导入器 Trk1 的正确定位、转运活性和底物亲和性调整。","authors":"Klara Papouskova, Olga Zimmermannova, Hana Sychrova","doi":"10.1016/j.bbamem.2024.184369","DOIUrl":null,"url":null,"abstract":"<div><p>Trk1 is the main K<sup>+</sup> importer of <em>Saccharomyces cerevisiae</em>. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K<sup>+</sup>. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment – pore loop – transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in <em>S. cerevisiae</em> cells without chromosomal copies of <em>TRK</em> genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K<sup>+</sup>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K+ importer Trk1\",\"authors\":\"Klara Papouskova, Olga Zimmermannova, Hana Sychrova\",\"doi\":\"10.1016/j.bbamem.2024.184369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trk1 is the main K<sup>+</sup> importer of <em>Saccharomyces cerevisiae</em>. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K<sup>+</sup>. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment – pore loop – transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in <em>S. cerevisiae</em> cells without chromosomal copies of <em>TRK</em> genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K<sup>+</sup>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273624001007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624001007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
Trk1 是酿酒酵母的主要 K+ 输入器。它的正常功能使酵母细胞能够在微摩尔量 K+ 的环境中生长。虽然 Trk1 的结构尚未通过实验确定,但根据预测,该转运体由四个 MPM(跨膜段-孔环-跨膜段)图案组成,这些图案通过胞内环相连。其中,第一个环(IL1)的长度尤为独特;它占整个蛋白质的一半以上。删除 IL1 的大部分并不能取消 Trk1 的运输活性。然而,IL1 被认为参与了转运体功能的调节。在这项工作中,我们制备了一系列缺乏不同部分 IL1 的内部缩短版 Trk1,并在没有 TRK 基因染色体拷贝的 S. cerevisiae 细胞中研究了它们的特性。利用这种方法,我们能够确定 IL1 的 N 边界和 C 边界区域都是 Trk1 正常定位所必需的。此外,IL1的N-边界部分对Trk1的功能也很重要,因为它的缺失会导致转运体的底物亲和力下降。此外,在IL1的内部,我们新发现了一段氨基酸残基,该残基对于保持转运体的最大速度不可或缺,而另一个区域的缺失则影响了Trk1根据外部K+水平调整其亲和力的能力。
Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K+ importer Trk1
Trk1 is the main K+ importer of Saccharomyces cerevisiae. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K+. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment – pore loop – transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in S. cerevisiae cells without chromosomal copies of TRK genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K+.