通过增强型 DECIMER 架构推进手绘化学结构识别。

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kohulan Rajan, Henning Otto Brinkhaus, Achim Zielesny, Christoph Steinbeck
{"title":"通过增强型 DECIMER 架构推进手绘化学结构识别。","authors":"Kohulan Rajan,&nbsp;Henning Otto Brinkhaus,&nbsp;Achim Zielesny,&nbsp;Christoph Steinbeck","doi":"10.1186/s13321-024-00872-7","DOIUrl":null,"url":null,"abstract":"<p>Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model's performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00872-7","citationCount":"0","resultStr":"{\"title\":\"Advancements in hand-drawn chemical structure recognition through an enhanced DECIMER architecture\",\"authors\":\"Kohulan Rajan,&nbsp;Henning Otto Brinkhaus,&nbsp;Achim Zielesny,&nbsp;Christoph Steinbeck\",\"doi\":\"10.1186/s13321-024-00872-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model's performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00872-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00872-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00872-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确识别手绘化学结构对于将传统实验室笔记本中的手写化学信息数字化或在平板电脑或智能手机上使用手写笔进行结构输入至关重要。然而,手绘结构固有的可变性给现有的光学化学结构识别(OCSR)软件带来了挑战。为解决这一问题,我们提出了增强型化学图像识别深度学习(DECIMER)架构,该架构利用卷积神经网络(CNN)和变换器的组合来提高手绘化学结构的识别率。该模型包含一个 EfficientNetV2 CNN 编码器,用于从手绘图像中提取特征,然后是一个变换器解码器,用于将提取的特征转换为简化分子输入行输入系统(SMILES)字符串。我们使用 RanDepict 生成的合成手绘图像对模型进行了训练,RanDepict 是一款使用不同风格元素描绘化学结构的工具。为了评估模型的性能,我们使用真实世界的手绘化学结构数据集进行了基准测试。结果表明,与其他方法相比,我们改进的 DECIMER 架构的识别准确率显著提高。科学贡献:本文介绍的新 DECIMER 模型完善了我们之前的研究工作,是目前唯一专门为识别手绘化学结构而定制的开源模型。增强后的模型在处理手写风格、线条粗细和背景噪声的变化方面表现更佳,使其适合实际应用。DECIMER 手绘结构识别模型及其源代码已根据许可协议作为开源软件包提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in hand-drawn chemical structure recognition through an enhanced DECIMER architecture

Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model's performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信