白蚁对植物残体腐烂作用的空间差异

IF 1.6 4区 环境科学与生态学 Q3 ECOLOGY
Austral Ecology Pub Date : 2024-07-03 DOI:10.1111/aec.13555
Baptiste J. Wijas, Mike Letnic, William K. Cornwell
{"title":"白蚁对植物残体腐烂作用的空间差异","authors":"Baptiste J. Wijas,&nbsp;Mike Letnic,&nbsp;William K. Cornwell","doi":"10.1111/aec.13555","DOIUrl":null,"url":null,"abstract":"<p>Drylands are characterized by high spatial variability in resource availability due to sporadic rainfall, topography of the landscape and important effects of animals. Resource availability gradients may trigger patterns in decomposer population abundances and activity, which could affect ecosystem functions such as decomposition. Here, we examined the influence of resource availability gradients on the importance of termites in the decomposition of wood and grass litter. We placed wood blocks and grass litter baits in bags accessible and inaccessible to termites across wood and grass resource gradients as determined by the presence or absence of a top mammalian predator and across topographic gradients during a 9-month period in arid Australia. We hypothesized that grass-eating termite activity would track grass abundance and wood-eating termite activity would track wood abundance. Termites were the predominant decomposition agent at these sites. Termites contributed to 99.5% of wood decomposition and 83.9% of grass decomposition during our study period. For wood, the termite effect was spatially variable and increased with habitat wood availability, which was greatest on dunes and where top predators were absent. However, the contribution of termites to grass litter decomposition did not track grass availability or termite abundance. The highest effects of termites on grass decomposition rates were found in habitats where the absence of top predators led to low grass availability. Our findings highlight how spatial variability in resources in addition to other factors that we do not document but are known to be influenced by the presence of top predators, such as insectivore predation rates, across the landscape could affect ecosystem functions such as decomposition.</p>","PeriodicalId":8663,"journal":{"name":"Austral Ecology","volume":"49 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variability in the contribution of termites to the decay of plant detritus\",\"authors\":\"Baptiste J. Wijas,&nbsp;Mike Letnic,&nbsp;William K. Cornwell\",\"doi\":\"10.1111/aec.13555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drylands are characterized by high spatial variability in resource availability due to sporadic rainfall, topography of the landscape and important effects of animals. Resource availability gradients may trigger patterns in decomposer population abundances and activity, which could affect ecosystem functions such as decomposition. Here, we examined the influence of resource availability gradients on the importance of termites in the decomposition of wood and grass litter. We placed wood blocks and grass litter baits in bags accessible and inaccessible to termites across wood and grass resource gradients as determined by the presence or absence of a top mammalian predator and across topographic gradients during a 9-month period in arid Australia. We hypothesized that grass-eating termite activity would track grass abundance and wood-eating termite activity would track wood abundance. Termites were the predominant decomposition agent at these sites. Termites contributed to 99.5% of wood decomposition and 83.9% of grass decomposition during our study period. For wood, the termite effect was spatially variable and increased with habitat wood availability, which was greatest on dunes and where top predators were absent. However, the contribution of termites to grass litter decomposition did not track grass availability or termite abundance. The highest effects of termites on grass decomposition rates were found in habitats where the absence of top predators led to low grass availability. Our findings highlight how spatial variability in resources in addition to other factors that we do not document but are known to be influenced by the presence of top predators, such as insectivore predation rates, across the landscape could affect ecosystem functions such as decomposition.</p>\",\"PeriodicalId\":8663,\"journal\":{\"name\":\"Austral Ecology\",\"volume\":\"49 7\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aec.13555\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aec.13555","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

旱地的特点是,由于降雨量零星、地形地貌和动物的重要影响,资源可用性的空间变化很大。资源可用性梯度可能会引发分解者种群丰度和活动的模式,从而影响生态系统的功能,如分解。在这里,我们研究了资源可用性梯度对白蚁在分解木屑和草屑过程中重要性的影响。我们在澳大利亚干旱地区进行了为期 9 个月的研究,将木块和草屑饵料分别装入白蚁可进入和不可进入的袋子中,并根据是否存在顶级哺乳动物捕食者以及地形梯度来确定木块和草屑的资源梯度。我们假设,食草白蚁的活动与草的丰度有关,而食木白蚁的活动与木材的丰度有关。白蚁是这些地点最主要的分解媒介。在我们的研究期间,99.5%的木材分解和83.9%的草的分解是白蚁造成的。对于木材来说,白蚁的作用在空间上是可变的,并且随着栖息地木材可用性的增加而增加,在沙丘上和没有顶级捕食者的地方,白蚁的作用最大。然而,白蚁对草屑分解的贡献与草的可利用性或白蚁的数量无关。白蚁对草分解率的最大影响出现在没有顶端捕食者导致草可用性低的栖息地。我们的研究结果突出表明,除了我们没有记录但已知会受顶端捕食者存在影响的其他因素(如食虫动物的捕食率)外,整个景观中资源的空间变化也会影响生态系统的功能,如分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial variability in the contribution of termites to the decay of plant detritus

Drylands are characterized by high spatial variability in resource availability due to sporadic rainfall, topography of the landscape and important effects of animals. Resource availability gradients may trigger patterns in decomposer population abundances and activity, which could affect ecosystem functions such as decomposition. Here, we examined the influence of resource availability gradients on the importance of termites in the decomposition of wood and grass litter. We placed wood blocks and grass litter baits in bags accessible and inaccessible to termites across wood and grass resource gradients as determined by the presence or absence of a top mammalian predator and across topographic gradients during a 9-month period in arid Australia. We hypothesized that grass-eating termite activity would track grass abundance and wood-eating termite activity would track wood abundance. Termites were the predominant decomposition agent at these sites. Termites contributed to 99.5% of wood decomposition and 83.9% of grass decomposition during our study period. For wood, the termite effect was spatially variable and increased with habitat wood availability, which was greatest on dunes and where top predators were absent. However, the contribution of termites to grass litter decomposition did not track grass availability or termite abundance. The highest effects of termites on grass decomposition rates were found in habitats where the absence of top predators led to low grass availability. Our findings highlight how spatial variability in resources in addition to other factors that we do not document but are known to be influenced by the presence of top predators, such as insectivore predation rates, across the landscape could affect ecosystem functions such as decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austral Ecology
Austral Ecology 环境科学-生态学
CiteScore
2.90
自引率
6.70%
发文量
117
审稿时长
12-24 weeks
期刊介绍: Austral Ecology is the premier journal for basic and applied ecology in the Southern Hemisphere. As the official Journal of The Ecological Society of Australia (ESA), Austral Ecology addresses the commonality between ecosystems in Australia and many parts of southern Africa, South America, New Zealand and Oceania. For example many species in the unique biotas of these regions share common Gondwana ancestors. ESA''s aim is to publish innovative research to encourage the sharing of information and experiences that enrich the understanding of the ecology of the Southern Hemisphere. Austral Ecology involves an editorial board with representatives from Australia, South Africa, New Zealand, Brazil and Argentina. These representatives provide expert opinions, access to qualified reviewers and act as a focus for attracting a wide range of contributions from countries across the region. Austral Ecology publishes original papers describing experimental, observational or theoretical studies on terrestrial, marine or freshwater systems, which are considered without taxonomic bias. Special thematic issues are published regularly, including symposia on the ecology of estuaries and soft sediment habitats, freshwater systems and coral reef fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信