TAAC:SDN-IoT 中安全高效的基于时间属性的访问控制方案

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiamin Hu, Zhonghua Shen, Kefei Chen, Yuying Liu, Qian Meng, Fuqun Wang, Yong Liu
{"title":"TAAC:SDN-IoT 中安全高效的基于时间属性的访问控制方案","authors":"Jiamin Hu,&nbsp;Zhonghua Shen,&nbsp;Kefei Chen,&nbsp;Yuying Liu,&nbsp;Qian Meng,&nbsp;Fuqun Wang,&nbsp;Yong Liu","doi":"10.1049/2024/8059692","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The convergence of software-defined networking (SDN) and the Internet of Things (IoT) provides a scalable method for handling the considerable volumes of data produced by IoT devices. However, the lack of appropriate security measures can lead to unauthorized access to sensitive data, potential breaches, and privacy violations, as well as time-consuming and inefficient data retrieval methods in SDN-IoT systems that require decrypting the entire dataset. To address these challenges, this article proposes the time-attribute-based access control scheme in SDN-IoT (TAAC). The TAAC scheme combines ciphertext-policy attribute-based encryption with a novel time-attribute-based access tree to ensure fine-grained access control on time and attributes, enabling secure ciphertext interaction and information sharing across domains. Furthermore, the TAAC scheme also incorporates searchable encryption, which enhances the efficiency of data retrieval. By implementing searchable encryption techniques, the data receiver can generate trapdoors to search and retrieve specific encrypted data without the need to decrypt the entire dataset. In summary, the TAAC scheme improves storage efficiency and computation, enhances scalability, and provides robust security, offering an efficient and secure solution for ciphertext sharing in SDN-IoT environments. Experimental results have demonstrated that the TAAC scheme shows excellent performance and outperforms other attribute-based searchable encryption algorithms.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8059692","citationCount":"0","resultStr":"{\"title\":\"TAAC: Secure and Efficient Time-Attribute-Based Access Control Scheme in SDN-IoT\",\"authors\":\"Jiamin Hu,&nbsp;Zhonghua Shen,&nbsp;Kefei Chen,&nbsp;Yuying Liu,&nbsp;Qian Meng,&nbsp;Fuqun Wang,&nbsp;Yong Liu\",\"doi\":\"10.1049/2024/8059692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The convergence of software-defined networking (SDN) and the Internet of Things (IoT) provides a scalable method for handling the considerable volumes of data produced by IoT devices. However, the lack of appropriate security measures can lead to unauthorized access to sensitive data, potential breaches, and privacy violations, as well as time-consuming and inefficient data retrieval methods in SDN-IoT systems that require decrypting the entire dataset. To address these challenges, this article proposes the time-attribute-based access control scheme in SDN-IoT (TAAC). The TAAC scheme combines ciphertext-policy attribute-based encryption with a novel time-attribute-based access tree to ensure fine-grained access control on time and attributes, enabling secure ciphertext interaction and information sharing across domains. Furthermore, the TAAC scheme also incorporates searchable encryption, which enhances the efficiency of data retrieval. By implementing searchable encryption techniques, the data receiver can generate trapdoors to search and retrieve specific encrypted data without the need to decrypt the entire dataset. In summary, the TAAC scheme improves storage efficiency and computation, enhances scalability, and provides robust security, offering an efficient and secure solution for ciphertext sharing in SDN-IoT environments. Experimental results have demonstrated that the TAAC scheme shows excellent performance and outperforms other attribute-based searchable encryption algorithms.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8059692\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/8059692\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/8059692","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

软件定义网络(SDN)与物联网(IoT)的融合为处理物联网设备产生的大量数据提供了一种可扩展的方法。然而,缺乏适当的安全措施会导致对敏感数据的未经授权访问、潜在的漏洞和隐私侵犯,以及在 SDN-IoT 系统中需要解密整个数据集的耗时且低效的数据检索方法。为应对这些挑战,本文提出了基于时间属性的 SDN-IoT 访问控制方案(TAAC)。TAAC 方案将基于密文策略属性的加密与新颖的基于时间属性的访问树相结合,确保对时间和属性的细粒度访问控制,从而实现安全的密文交互和跨域信息共享。此外,TAAC 方案还采用了可搜索加密技术,提高了数据检索的效率。通过采用可搜索加密技术,数据接收方可以生成陷阱门来搜索和检索特定的加密数据,而无需对整个数据集进行解密。总之,TAAC方案提高了存储效率和计算能力,增强了可扩展性,并提供了稳健的安全性,为SDN-IoT环境中的密文共享提供了高效、安全的解决方案。实验结果表明,TAAC 方案性能卓越,优于其他基于属性的可搜索加密算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TAAC: Secure and Efficient Time-Attribute-Based Access Control Scheme in SDN-IoT

TAAC: Secure and Efficient Time-Attribute-Based Access Control Scheme in SDN-IoT

The convergence of software-defined networking (SDN) and the Internet of Things (IoT) provides a scalable method for handling the considerable volumes of data produced by IoT devices. However, the lack of appropriate security measures can lead to unauthorized access to sensitive data, potential breaches, and privacy violations, as well as time-consuming and inefficient data retrieval methods in SDN-IoT systems that require decrypting the entire dataset. To address these challenges, this article proposes the time-attribute-based access control scheme in SDN-IoT (TAAC). The TAAC scheme combines ciphertext-policy attribute-based encryption with a novel time-attribute-based access tree to ensure fine-grained access control on time and attributes, enabling secure ciphertext interaction and information sharing across domains. Furthermore, the TAAC scheme also incorporates searchable encryption, which enhances the efficiency of data retrieval. By implementing searchable encryption techniques, the data receiver can generate trapdoors to search and retrieve specific encrypted data without the need to decrypt the entire dataset. In summary, the TAAC scheme improves storage efficiency and computation, enhances scalability, and provides robust security, offering an efficient and secure solution for ciphertext sharing in SDN-IoT environments. Experimental results have demonstrated that the TAAC scheme shows excellent performance and outperforms other attribute-based searchable encryption algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信