温度低至毫开尔文的 YIG 薄膜中的磁各向异性和 GGG 基底杂散磁场。

Rostyslav O. Serha, Andrey A. Voronov, David Schmoll, Roman Verba, Khrystyna O. Levchenko, Sabri Koraltan, Kristýna Davídková, Barbora Budinská, Qi Wang, Oleksandr V. Dobrovolskiy, Michal Urbánek, Morris Lindner, Timmy Reimann, Carsten Dubs, Carlos Gonzalez-Ballestero, Claas Abert, Dieter Suess, Dmytro A. Bozhko, Sebastian Knauer, Andrii V. Chumak
{"title":"温度低至毫开尔文的 YIG 薄膜中的磁各向异性和 GGG 基底杂散磁场。","authors":"Rostyslav O. Serha, Andrey A. Voronov, David Schmoll, Roman Verba, Khrystyna O. Levchenko, Sabri Koraltan, Kristýna Davídková, Barbora Budinská, Qi Wang, Oleksandr V. Dobrovolskiy, Michal Urbánek, Morris Lindner, Timmy Reimann, Carsten Dubs, Carlos Gonzalez-Ballestero, Claas Abert, Dieter Suess, Dmytro A. Bozhko, Sebastian Knauer, Andrii V. Chumak","doi":"10.1038/s44306-024-00030-7","DOIUrl":null,"url":null,"abstract":"Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 μm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219280/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures\",\"authors\":\"Rostyslav O. Serha, Andrey A. Voronov, David Schmoll, Roman Verba, Khrystyna O. Levchenko, Sabri Koraltan, Kristýna Davídková, Barbora Budinská, Qi Wang, Oleksandr V. Dobrovolskiy, Michal Urbánek, Morris Lindner, Timmy Reimann, Carsten Dubs, Carlos Gonzalez-Ballestero, Claas Abert, Dieter Suess, Dmytro A. Bozhko, Sebastian Knauer, Andrii V. Chumak\",\"doi\":\"10.1038/s44306-024-00030-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 μm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00030-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00030-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子磁学研究磁子的量子力学特性,如量子相干性或纠缠,用于纳米尺度的固态量子信息技术。量子磁子学最有前途的材料是铁磁性钇铁石榴石(YIG),它所承载的磁子寿命最长。最高质量的 YIG 薄膜是在顺磁性钆镓石榴石(GGG)基底上生长的。据文献报道,尽管 YIG 的磁化率增加,但在温度低于 50 K 时,YIG/GGG 的铁磁共振 (FMR) 频率会降低。我们使用分析和数值方法,在低至 30 mK 的温度下进行了一系列实验,研究了生长在 500 μm 厚 GGG 衬底上的 97 nm 厚 YIG 薄膜。我们的研究结果表明,导致 FMR 频率偏移的主要因素是部分磁化的 GGG 衬底产生的杂散磁场。这种杂散磁场与外加磁场反平行,而且高度不均匀,在样品中心可达 40 mT。在低于 500 mK 的温度下,GGG 场呈现饱和状态,无法用准磁体的标准布里渊函数来描述。将计算出的 GGG 场纳入 FMR 频率随温度变化的分析中,可以确定立方各向异性和单轴各向异性。我们发现,随着温度降低到 2 K,总晶体学各向异性增加了三倍多。我们的研究结果能够准确预测 YIG/GGG 磁性系统在低温和超低毫开尔文温度下的行为,这对开发量子磁性器件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures

Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures
Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 μm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信