基于深度学习的动态对比增强核磁共振成像左心室心肌分割:跨时间帧综合评估

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Raufiya Jafari, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh
{"title":"基于深度学习的动态对比增强核磁共振成像左心室心肌分割:跨时间帧综合评估","authors":"Raufiya Jafari, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh","doi":"10.1007/s11548-024-03221-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital.</p><p><strong>Methods: </strong>The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI.</p><p><strong>Results: </strong>The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06.</p><p><strong>Conclusion: </strong>The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames.\",\"authors\":\"Raufiya Jafari, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh\",\"doi\":\"10.1007/s11548-024-03221-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital.</p><p><strong>Methods: </strong>The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI.</p><p><strong>Results: </strong>The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06.</p><p><strong>Conclusion: </strong>The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03221-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03221-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:心脏灌注 MRI 对疾病诊断、治疗计划和风险分层至关重要,其异常可作为潜在缺血性病变的标记。人工智能辅助方法和工具可在所有 DCE-MRI 时间范围内实现准确、高效的左心室(LV)心肌分割,为解决数据的多维性所带来的挑战提供了解决方案。本研究旨在开发和评估一种自动方法,用于对一家地方医院的 DCE-MRI 数据进行左心室心肌分割:研究包括当地医院使用 1.5 T MRI 扫描仪采集的 55 名受试者的回顾性 DCE-MRI 数据。数据集包括有心脏异常和无心脏异常的受试者。参考框架(对比后左心室心肌)的时间点是通过各时间序列的标准偏差确定的。使用麦克斯韦恶魔算法对其他时间图像进行迭代图像配准。注册后的叠加图像被输入到使用 U-Net 框架建立的模型中,用于预测 DCE-MRI 所有时间段的左心室心肌:结果:使用预训练网络 Net_cine 进行心肌分割的骰子相似系数(DSC)的平均值和标准偏差为 0.78 ± 0.04,而单独预测所有时间帧掩膜的微调网络 Net_dyn 的骰子相似系数(DSC)的平均值和标准偏差为 0.78 ± 0.03。Net_dyn 的 DSC 在 0.71 到 0.93 之间。参考帧的平均 DSC 为 0.82 ± 0.06:该研究提出了一种快速、全自动的人工智能辅助方法,用于在 DCE-MRI 数据的所有时间框架上分割左心室心肌。该方法具有鲁棒性,其性能与时内序列配准无关,可轻松适应存在潜在配准误差的时帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames.

Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames.

Purpose: Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital.

Methods: The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI.

Results: The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06.

Conclusion: The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信