{"title":"根据耐药性癫痫丘脑皮质束的微观结构特征识别迷走神经刺激的应答者。","authors":"","doi":"10.1016/j.neurot.2024.e00422","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether <em>in vivo</em> microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 ± 10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (p<sub>FDR</sub> < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00422"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy\",\"authors\":\"\",\"doi\":\"10.1016/j.neurot.2024.e00422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether <em>in vivo</em> microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 ± 10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (p<sub>FDR</sub> < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.</div></div>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\"21 5\",\"pages\":\"Article e00422\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878747924001089\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy
The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether in vivo microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 ± 10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (pFDR < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.