Alejandra Lagos-Monzon, Stephanie Ng, Alice M. Luca, Hongbing Li, Mathura Sabanayagam, Mariana Benicio, Houtan Moshiri, Richard Armstrong, Chetan Tailor, Marion Kennedy, Eyal Grunebaum, Gordon Keller, Yigal Dror
{"title":"异常的早期造血祖细胞形成标志着 Shwachman-Diamond 综合征造血缺陷的开始。","authors":"Alejandra Lagos-Monzon, Stephanie Ng, Alice M. Luca, Hongbing Li, Mathura Sabanayagam, Mariana Benicio, Houtan Moshiri, Richard Armstrong, Chetan Tailor, Marion Kennedy, Eyal Grunebaum, Gordon Keller, Yigal Dror","doi":"10.1111/ejh.14260","DOIUrl":null,"url":null,"abstract":"<p>Shwachman–Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (<i>SBDS</i> and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of <i>SBDS</i> in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., <i>CHCHD2</i>) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.</p>","PeriodicalId":11955,"journal":{"name":"European Journal of Haematology","volume":"113 4","pages":"530-542"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejh.14260","citationCount":"0","resultStr":"{\"title\":\"Aberrant early hematopoietic progenitor formation marks the onset of hematopoietic defects in Shwachman–Diamond syndrome\",\"authors\":\"Alejandra Lagos-Monzon, Stephanie Ng, Alice M. Luca, Hongbing Li, Mathura Sabanayagam, Mariana Benicio, Houtan Moshiri, Richard Armstrong, Chetan Tailor, Marion Kennedy, Eyal Grunebaum, Gordon Keller, Yigal Dror\",\"doi\":\"10.1111/ejh.14260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shwachman–Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (<i>SBDS</i> and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of <i>SBDS</i> in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., <i>CHCHD2</i>) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.</p>\",\"PeriodicalId\":11955,\"journal\":{\"name\":\"European Journal of Haematology\",\"volume\":\"113 4\",\"pages\":\"530-542\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejh.14260\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Haematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejh.14260\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejh.14260","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Aberrant early hematopoietic progenitor formation marks the onset of hematopoietic defects in Shwachman–Diamond syndrome
Shwachman–Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (SBDS and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of SBDS in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., CHCHD2) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.
期刊介绍:
European Journal of Haematology is an international journal for communication of basic and clinical research in haematology. The journal welcomes manuscripts on molecular, cellular and clinical research on diseases of the blood, vascular and lymphatic tissue, and on basic molecular and cellular research related to normal development and function of the blood, vascular and lymphatic tissue. The journal also welcomes reviews on clinical haematology and basic research, case reports, and clinical pictures.