帕博西尼(palbociclib)抑制TCF12/VSIG4轴可减少胶质瘤细胞的增殖和迁移,并降低胶质瘤相关小胶质细胞的M2极化。

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL
Chuankun Li, Ruichun Li, Yuan Wang, Haitao Jiang
{"title":"帕博西尼(palbociclib)抑制TCF12/VSIG4轴可减少胶质瘤细胞的增殖和迁移,并降低胶质瘤相关小胶质细胞的M2极化。","authors":"Chuankun Li,&nbsp;Ruichun Li,&nbsp;Yuan Wang,&nbsp;Haitao Jiang","doi":"10.1002/ddr.22230","DOIUrl":null,"url":null,"abstract":"<p>The CDK4/CDK6 inhibitor palbociclib has shown the encouraging promise in the treatment of glioma. Here, we elucidated how palbociclib exerts suppressive functions in the M2 polarization of glioma-related microglia and the progression of glioma. Xenograft experiments were used to evaluate the function in vivo. The mRNA levels of transcription factor 12 (TCF12) and VSIG4 were detected by RT-qPCR, and their protein levels were assessed by immunoblotting. Cell migration was tested by wound-healing assay. Cell cycle distribution and M1/M2 microglia phenotype analysis were performed by flow cytometry. The levels of IFN-γ, TNF-α, IL-6,and TGF-β were measured by ELISA. The TCF12/VSIG4 association was verified by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In U251 and LN229 glioma cells, TCF12 and VSIG4 were overexpressed, and palbociclib reduced their expression levels. TCF12 upregulation enhanced the proliferation and migration of glioma cells and the M2 polarization of glioma-associated microglia in vitro as well as the tumorigenicity of U251 glioma cells in vivo, which could be reversed by palbociclib. Mechanistically, TCF12 could enhance VSIG4 transcription and expression by binding to the VSIG4 promoter. TCF12 deficiency led to repression in glioma cell proliferation and migration as well as microglia M2 polarization, which could be abolished by increased VSIG4 expression. Our study reveals the novel TCF12/VSIG4 axis responsible for the efficacy of palbociclib in combating glioma, offering a rationale for the application of palbociclib in glioma treatment.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of the TCF12/VSIG4 axis by palbociclib diminishes the proliferation and migration of glioma cells and decreases the M2 polarization of glioma-associated microglia\",\"authors\":\"Chuankun Li,&nbsp;Ruichun Li,&nbsp;Yuan Wang,&nbsp;Haitao Jiang\",\"doi\":\"10.1002/ddr.22230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The CDK4/CDK6 inhibitor palbociclib has shown the encouraging promise in the treatment of glioma. Here, we elucidated how palbociclib exerts suppressive functions in the M2 polarization of glioma-related microglia and the progression of glioma. Xenograft experiments were used to evaluate the function in vivo. The mRNA levels of transcription factor 12 (TCF12) and VSIG4 were detected by RT-qPCR, and their protein levels were assessed by immunoblotting. Cell migration was tested by wound-healing assay. Cell cycle distribution and M1/M2 microglia phenotype analysis were performed by flow cytometry. The levels of IFN-γ, TNF-α, IL-6,and TGF-β were measured by ELISA. The TCF12/VSIG4 association was verified by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In U251 and LN229 glioma cells, TCF12 and VSIG4 were overexpressed, and palbociclib reduced their expression levels. TCF12 upregulation enhanced the proliferation and migration of glioma cells and the M2 polarization of glioma-associated microglia in vitro as well as the tumorigenicity of U251 glioma cells in vivo, which could be reversed by palbociclib. Mechanistically, TCF12 could enhance VSIG4 transcription and expression by binding to the VSIG4 promoter. TCF12 deficiency led to repression in glioma cell proliferation and migration as well as microglia M2 polarization, which could be abolished by increased VSIG4 expression. Our study reveals the novel TCF12/VSIG4 axis responsible for the efficacy of palbociclib in combating glioma, offering a rationale for the application of palbociclib in glioma treatment.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22230\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

CDK4/CDK6抑制剂帕博西尼(palbociclib)在治疗胶质瘤方面显示出令人鼓舞的前景。在这里,我们阐明了palbociclib如何在胶质瘤相关小胶质细胞的M2极化和胶质瘤的进展中发挥抑制作用。我们利用异种移植实验来评估其体内功能。通过RT-qPCR检测转录因子12(TCF12)和VSIG4的mRNA水平,并通过免疫印迹评估其蛋白水平。通过伤口愈合试验检测细胞迁移。流式细胞术对细胞周期分布和 M1/M2 小胶质细胞表型进行了分析。IFN-γ、TNF-α、IL-6和TGF-β的水平通过酶联免疫吸附法测定。荧光素酶报告和染色质免疫沉淀(ChIP)试验验证了TCF12/VSIG4的关联。在 U251 和 LN229 脑胶质瘤细胞中,TCF12 和 VSIG4 表达过高,而 palbociclib 能降低它们的表达水平。TCF12的上调增强了胶质瘤细胞在体外的增殖和迁移以及胶质瘤相关小胶质细胞的M2极化,也增强了U251胶质瘤细胞在体内的致瘤性。从机制上讲,TCF12可通过与VSIG4启动子结合来增强VSIG4的转录和表达。TCF12 的缺乏会导致胶质瘤细胞增殖和迁移以及小胶质细胞 M2 极化的抑制,而 VSIG4 表达的增加可消除这种抑制。我们的研究揭示了导致帕博西尼(palbociclib)抗胶质瘤疗效的新型TCF12/VSIG4轴,为帕博西尼在胶质瘤治疗中的应用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of the TCF12/VSIG4 axis by palbociclib diminishes the proliferation and migration of glioma cells and decreases the M2 polarization of glioma-associated microglia

The CDK4/CDK6 inhibitor palbociclib has shown the encouraging promise in the treatment of glioma. Here, we elucidated how palbociclib exerts suppressive functions in the M2 polarization of glioma-related microglia and the progression of glioma. Xenograft experiments were used to evaluate the function in vivo. The mRNA levels of transcription factor 12 (TCF12) and VSIG4 were detected by RT-qPCR, and their protein levels were assessed by immunoblotting. Cell migration was tested by wound-healing assay. Cell cycle distribution and M1/M2 microglia phenotype analysis were performed by flow cytometry. The levels of IFN-γ, TNF-α, IL-6,and TGF-β were measured by ELISA. The TCF12/VSIG4 association was verified by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In U251 and LN229 glioma cells, TCF12 and VSIG4 were overexpressed, and palbociclib reduced their expression levels. TCF12 upregulation enhanced the proliferation and migration of glioma cells and the M2 polarization of glioma-associated microglia in vitro as well as the tumorigenicity of U251 glioma cells in vivo, which could be reversed by palbociclib. Mechanistically, TCF12 could enhance VSIG4 transcription and expression by binding to the VSIG4 promoter. TCF12 deficiency led to repression in glioma cell proliferation and migration as well as microglia M2 polarization, which could be abolished by increased VSIG4 expression. Our study reveals the novel TCF12/VSIG4 axis responsible for the efficacy of palbociclib in combating glioma, offering a rationale for the application of palbociclib in glioma treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信