大象多项式

IF 0.9 3区 数学 Q2 MATHEMATICS
Hélène Guérin, Lucile Laulin, Kilian Raschel
{"title":"大象多项式","authors":"Hélène Guérin, Lucile Laulin, Kilian Raschel","doi":"10.1007/s00010-024-01095-9","DOIUrl":null,"url":null,"abstract":"<p>In this note, we study a family of polynomials that appear naturally when analysing the characteristic functions of the one-dimensional elephant random walk. These polynomials depend on a memory parameter <i>p</i> attached to the model. For certain values of <i>p</i>, these polynomials specialise to classical polynomials, such as the Chebychev polynomials in the simplest case, or generating polynomials of various combinatorial triangular arrays (e.g. Eulerian numbers). Although these polynomials are generically non-orthogonal (except for <span>\\(p=\\frac{1}{2}\\)</span> and <span>\\(p=1\\)</span>), they have interlacing roots. Finally, we relate some algebraic properties of these polynomials to the probabilistic behaviour of the elephant random walk. Our methods are reminiscent of classical orthogonal polynomial theory and are elementary.\n</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elephant polynomials\",\"authors\":\"Hélène Guérin, Lucile Laulin, Kilian Raschel\",\"doi\":\"10.1007/s00010-024-01095-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we study a family of polynomials that appear naturally when analysing the characteristic functions of the one-dimensional elephant random walk. These polynomials depend on a memory parameter <i>p</i> attached to the model. For certain values of <i>p</i>, these polynomials specialise to classical polynomials, such as the Chebychev polynomials in the simplest case, or generating polynomials of various combinatorial triangular arrays (e.g. Eulerian numbers). Although these polynomials are generically non-orthogonal (except for <span>\\\\(p=\\\\frac{1}{2}\\\\)</span> and <span>\\\\(p=1\\\\)</span>), they have interlacing roots. Finally, we relate some algebraic properties of these polynomials to the probabilistic behaviour of the elephant random walk. Our methods are reminiscent of classical orthogonal polynomial theory and are elementary.\\n</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01095-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01095-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们将研究在分析一维大象随机行走的特征函数时自然出现的多项式族。这些多项式取决于模型的记忆参数 p。对于特定的 p 值,这些多项式会特化为经典多项式,如最简单情况下的切比切夫多项式,或各种组合三角阵列(如欧拉数)的生成多项式。虽然这些多项式一般都是非正交的(除了 \(p=\frac{1}{2}\ 和 \(p=1\)),但它们的根是交错的。最后,我们将这些多项式的一些代数性质与大象随机行走的概率行为联系起来。我们的方法让人联想到经典的正交多项式理论,是基本的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elephant polynomials

Elephant polynomials

In this note, we study a family of polynomials that appear naturally when analysing the characteristic functions of the one-dimensional elephant random walk. These polynomials depend on a memory parameter p attached to the model. For certain values of p, these polynomials specialise to classical polynomials, such as the Chebychev polynomials in the simplest case, or generating polynomials of various combinatorial triangular arrays (e.g. Eulerian numbers). Although these polynomials are generically non-orthogonal (except for \(p=\frac{1}{2}\) and \(p=1\)), they have interlacing roots. Finally, we relate some algebraic properties of these polynomials to the probabilistic behaviour of the elephant random walk. Our methods are reminiscent of classical orthogonal polynomial theory and are elementary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信