通过带有变压器编码器的粗到细网络进行点云升采样

Yixi Li, Yanzhe Liu, Rong Chen, Hui Li, Na Zhao
{"title":"通过带有变压器编码器的粗到细网络进行点云升采样","authors":"Yixi Li, Yanzhe Liu, Rong Chen, Hui Li, Na Zhao","doi":"10.1007/s00371-024-03535-8","DOIUrl":null,"url":null,"abstract":"<p>Point clouds provide a common geometric representation for burgeoning 3D graphics and vision tasks. To deal with the sparse, noisy and non-uniform output of most 3D data acquisition devices, this paper presents a novel coarse-to-fine learning framework that incorporates the Transformer-encoder and positional feature fusion. Its long-range dependencies with sensitive positional information allow robust feature embedding and fusion of points, especially noising elements and non-regular outliers. The proposed network consists of a Coarse Points Generator and a Points Offsets Refiner. The generator embodies a multi-feature Transformer-encoder and an EdgeConv-based feature reshaping to infer the coarse but dense upsampling point sets, whereas the refiner further learns the positions of upsampled points based on multi-feature fusion strategy that can adaptively adjust the fused features’ weights of coarse points and points offsets. Extensive qualitative and quantitative results on both synthetic and real-scanned datasets demonstrate the superiority of our method over the state-of-the-arts. Our code is publicly available at https://github.com/Superlyxi/CFT-PU.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point cloud upsampling via a coarse-to-fine network with transformer-encoder\",\"authors\":\"Yixi Li, Yanzhe Liu, Rong Chen, Hui Li, Na Zhao\",\"doi\":\"10.1007/s00371-024-03535-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Point clouds provide a common geometric representation for burgeoning 3D graphics and vision tasks. To deal with the sparse, noisy and non-uniform output of most 3D data acquisition devices, this paper presents a novel coarse-to-fine learning framework that incorporates the Transformer-encoder and positional feature fusion. Its long-range dependencies with sensitive positional information allow robust feature embedding and fusion of points, especially noising elements and non-regular outliers. The proposed network consists of a Coarse Points Generator and a Points Offsets Refiner. The generator embodies a multi-feature Transformer-encoder and an EdgeConv-based feature reshaping to infer the coarse but dense upsampling point sets, whereas the refiner further learns the positions of upsampled points based on multi-feature fusion strategy that can adaptively adjust the fused features’ weights of coarse points and points offsets. Extensive qualitative and quantitative results on both synthetic and real-scanned datasets demonstrate the superiority of our method over the state-of-the-arts. Our code is publicly available at https://github.com/Superlyxi/CFT-PU.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03535-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03535-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云为蓬勃发展的三维图形和视觉任务提供了一种常见的几何表示方法。为了处理大多数三维数据采集设备输出的稀疏、噪声和不均匀性,本文提出了一种新颖的从粗到细的学习框架,该框架结合了变换编码器和位置特征融合。它与敏感位置信息的长程依赖关系允许对点进行稳健的特征嵌入和融合,特别是噪声元素和非规则离群点。拟议的网络由粗点生成器和点偏移精炼器组成。粗点生成器包含一个多特征变换编码器和一个基于 EdgeConv 的特征重塑器,用于推断粗糙但密集的上采样点集,而细化器则基于多特征融合策略进一步学习上采样点的位置,从而自适应地调整粗点和点偏移的融合特征权重。在合成数据集和真实扫描数据集上取得的大量定性和定量结果表明,我们的方法优于同行。我们的代码可在 https://github.com/Superlyxi/CFT-PU 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Point cloud upsampling via a coarse-to-fine network with transformer-encoder

Point cloud upsampling via a coarse-to-fine network with transformer-encoder

Point clouds provide a common geometric representation for burgeoning 3D graphics and vision tasks. To deal with the sparse, noisy and non-uniform output of most 3D data acquisition devices, this paper presents a novel coarse-to-fine learning framework that incorporates the Transformer-encoder and positional feature fusion. Its long-range dependencies with sensitive positional information allow robust feature embedding and fusion of points, especially noising elements and non-regular outliers. The proposed network consists of a Coarse Points Generator and a Points Offsets Refiner. The generator embodies a multi-feature Transformer-encoder and an EdgeConv-based feature reshaping to infer the coarse but dense upsampling point sets, whereas the refiner further learns the positions of upsampled points based on multi-feature fusion strategy that can adaptively adjust the fused features’ weights of coarse points and points offsets. Extensive qualitative and quantitative results on both synthetic and real-scanned datasets demonstrate the superiority of our method over the state-of-the-arts. Our code is publicly available at https://github.com/Superlyxi/CFT-PU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信