具有非三维封闭不变仿射子空间的算子

IF 0.9 3区 数学 Q2 MATHEMATICS
Janko Bračič
{"title":"具有非三维封闭不变仿射子空间的算子","authors":"Janko Bračič","doi":"10.1007/s00010-024-01090-0","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with the question of the existence of an invariant proper affine subspace for an operator <i>A</i> on a complex Banach space. It turns out that the presence of the number 1 in the spectrum of <i>A</i> or in the spectrum of its adjoint operator <span>\\(A^*\\)</span> is crucial. For instance, an algebraic operator has an invariant proper affine subspace if and only if 1 is its eigenvalue. For an arbitrary operator <i>A</i>, we show that it has an invariant proper hyperplane if and only if 1 is an eigenvalue of <span>\\(A^*\\)</span>. If <i>A</i> is a power bounded operator, then every invariant proper affine subspace is contained in an invariant proper hyperplane, moreover, <i>A</i> has a non-trivial invariant cone.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01090-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Operators with a non-trivial closed invariant affine subspace\",\"authors\":\"Janko Bračič\",\"doi\":\"10.1007/s00010-024-01090-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with the question of the existence of an invariant proper affine subspace for an operator <i>A</i> on a complex Banach space. It turns out that the presence of the number 1 in the spectrum of <i>A</i> or in the spectrum of its adjoint operator <span>\\\\(A^*\\\\)</span> is crucial. For instance, an algebraic operator has an invariant proper affine subspace if and only if 1 is its eigenvalue. For an arbitrary operator <i>A</i>, we show that it has an invariant proper hyperplane if and only if 1 is an eigenvalue of <span>\\\\(A^*\\\\)</span>. If <i>A</i> is a power bounded operator, then every invariant proper affine subspace is contained in an invariant proper hyperplane, moreover, <i>A</i> has a non-trivial invariant cone.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01090-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01090-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01090-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的问题是复巴纳赫空间上的算子 A 是否存在不变的适当仿射子空间。事实证明,在 A 的谱或其邻接算子 \(A^*\)的谱中是否存在数字 1 至关重要。例如,当且仅当 1 是一个代数算子的特征值时,它才有一个不变的适当仿射子空间。对于任意算子 A,我们证明,只有当 1 是 \(A^*\) 的特征值时,它才有一个不变的适当超平面。如果 A 是一个幂有界算子,那么每个不变的适当仿射子空间都包含在一个不变的适当超平面中,此外,A 还有一个非三维不变锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operators with a non-trivial closed invariant affine subspace

We are concerned with the question of the existence of an invariant proper affine subspace for an operator A on a complex Banach space. It turns out that the presence of the number 1 in the spectrum of A or in the spectrum of its adjoint operator \(A^*\) is crucial. For instance, an algebraic operator has an invariant proper affine subspace if and only if 1 is its eigenvalue. For an arbitrary operator A, we show that it has an invariant proper hyperplane if and only if 1 is an eigenvalue of \(A^*\). If A is a power bounded operator, then every invariant proper affine subspace is contained in an invariant proper hyperplane, moreover, A has a non-trivial invariant cone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信