三临界点是 I_s$ 型和 II_s$ 型分岔的交叉点

Prabakaran Rajamanickam, Joel Daou
{"title":"三临界点是 I_s$ 型和 II_s$ 型分岔的交叉点","authors":"Prabakaran Rajamanickam, Joel Daou","doi":"arxiv-2407.00109","DOIUrl":null,"url":null,"abstract":"A tricritical point as a crossover between (stationary finite-wavelength)\ntype-I$_s$ and (stationary longwave) type-II$_s$ bifurcations is identified in\nthe study of diffusive-thermal (Turing) instability of flames propagating in a\nHele-Shaw channel in a direction transverse to a shear flow. Three regimes\nexhibiting different scaling laws are identified in the neighbourhood of the\ntricritical point. For these three regimes, sixth-order partial differential\nequations are obtained governing the weakly nonlinear evolution of unstable\nsolutions near the onset of instability. These sixth-order PDES may be regarded\nas the substitute for the classical fourth-order Kuramoto--Sivashinsky equation\nwhich is not applicable near the tricritical point.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tricritical point as a crossover between type-I$_s$ and type-II$_s$ bifurcations\",\"authors\":\"Prabakaran Rajamanickam, Joel Daou\",\"doi\":\"arxiv-2407.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tricritical point as a crossover between (stationary finite-wavelength)\\ntype-I$_s$ and (stationary longwave) type-II$_s$ bifurcations is identified in\\nthe study of diffusive-thermal (Turing) instability of flames propagating in a\\nHele-Shaw channel in a direction transverse to a shear flow. Three regimes\\nexhibiting different scaling laws are identified in the neighbourhood of the\\ntricritical point. For these three regimes, sixth-order partial differential\\nequations are obtained governing the weakly nonlinear evolution of unstable\\nsolutions near the onset of instability. These sixth-order PDES may be regarded\\nas the substitute for the classical fourth-order Kuramoto--Sivashinsky equation\\nwhich is not applicable near the tricritical point.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在横向于剪切流方向的赫勒-肖通道中传播的火焰的扩散-热(图灵)不稳定性研究中,确定了作为(静止有限波长)I 型$_s$ 和(静止长波)II 型$_s$ 分岔之间交叉点的三临界点。在临界点附近发现了三种表现出不同缩放规律的状态。针对这三种情况,得到了六阶偏微分方程,用于控制不稳定开始时附近非稳定解决方案的弱非线性演变。这些六阶偏微分方程可被视为经典四阶 Kuramoto--Sivashinsky 方程的替代方程,后者在三临界点附近并不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tricritical point as a crossover between type-I$_s$ and type-II$_s$ bifurcations
A tricritical point as a crossover between (stationary finite-wavelength) type-I$_s$ and (stationary longwave) type-II$_s$ bifurcations is identified in the study of diffusive-thermal (Turing) instability of flames propagating in a Hele-Shaw channel in a direction transverse to a shear flow. Three regimes exhibiting different scaling laws are identified in the neighbourhood of the tricritical point. For these three regimes, sixth-order partial differential equations are obtained governing the weakly nonlinear evolution of unstable solutions near the onset of instability. These sixth-order PDES may be regarded as the substitute for the classical fourth-order Kuramoto--Sivashinsky equation which is not applicable near the tricritical point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信