两个洗牌代数的故事

Andrei Neguț
{"title":"两个洗牌代数的故事","authors":"Andrei Neguț","doi":"10.1007/s00029-024-00941-7","DOIUrl":null,"url":null,"abstract":"<p>As a quantum affinization, the quantum toroidal algebra <span>\\({U_{q,{{\\overline{q}}}}(\\ddot{{\\mathfrak {gl}}}_n)}\\)</span> is defined in terms of its “left” and “right” halves, which both admit shuffle algebra presentations (Enriquez in Transform Groups 5(2):111–120, 2000; Feigin and Odesskii in Am Math Soc Transl Ser 2:185, 1998). In the present paper, we take an orthogonal viewpoint, and give shuffle algebra presentations for the “top” and “bottom” halves instead, starting from the evaluation representation <span>\\({U_q({\\dot{{\\mathfrak {gl}}}}_n)}\\curvearrowright {{\\mathbb {C}}}^n(z)\\)</span> and its usual <i>R</i>-matrix <span>\\(R(z) \\in \\text {End}({{\\mathbb {C}}}^n \\otimes {{\\mathbb {C}}}^n)(z)\\)</span> (see Faddeev et al. in Leningrad Math J 1:193–226, 1990). An upshot of this construction is a new topological coproduct on <span>\\({U_{q,{{\\overline{q}}}}(\\ddot{{\\mathfrak {gl}}}_n)}\\)</span> which extends the Drinfeld–Jimbo coproduct on the horizontal subalgebra <span>\\({U_q({\\dot{{\\mathfrak {gl}}}}_n)}\\subset {U_{q,{{\\overline{q}}}}(\\ddot{{\\mathfrak {gl}}}_n)}\\)</span>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tale of two shuffle algebras\",\"authors\":\"Andrei Neguț\",\"doi\":\"10.1007/s00029-024-00941-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a quantum affinization, the quantum toroidal algebra <span>\\\\({U_{q,{{\\\\overline{q}}}}(\\\\ddot{{\\\\mathfrak {gl}}}_n)}\\\\)</span> is defined in terms of its “left” and “right” halves, which both admit shuffle algebra presentations (Enriquez in Transform Groups 5(2):111–120, 2000; Feigin and Odesskii in Am Math Soc Transl Ser 2:185, 1998). In the present paper, we take an orthogonal viewpoint, and give shuffle algebra presentations for the “top” and “bottom” halves instead, starting from the evaluation representation <span>\\\\({U_q({\\\\dot{{\\\\mathfrak {gl}}}}_n)}\\\\curvearrowright {{\\\\mathbb {C}}}^n(z)\\\\)</span> and its usual <i>R</i>-matrix <span>\\\\(R(z) \\\\in \\\\text {End}({{\\\\mathbb {C}}}^n \\\\otimes {{\\\\mathbb {C}}}^n)(z)\\\\)</span> (see Faddeev et al. in Leningrad Math J 1:193–226, 1990). An upshot of this construction is a new topological coproduct on <span>\\\\({U_{q,{{\\\\overline{q}}}}(\\\\ddot{{\\\\mathfrak {gl}}}_n)}\\\\)</span> which extends the Drinfeld–Jimbo coproduct on the horizontal subalgebra <span>\\\\({U_q({\\\\dot{{\\\\mathfrak {gl}}}}_n)}\\\\subset {U_{q,{{\\\\overline{q}}}}(\\\\ddot{{\\\\mathfrak {gl}}}_n)}\\\\)</span>.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00941-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00941-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为量子缀合,量子环形代数({U_{q,{{overline{q}}}}(\ddot{{\mathfrak {gl}}_n)}\ )是根据它的 "左 "半边和 "右 "半边定义的,而这两半都可以用洗牌代数表示(Enriquez 在 Transform Groups 5(2):111-120, 2000; Feigin 和 Odesskii 在 Am Math Soc Transl Ser 2:185, 1998)。在本文中,我们从正交的角度出发,给出了 "上半部分 "和 "下半部分 "的洗牌代数表示、从评价表示 \({U_q({\dot{{\mathfrak {gl}}}}_n)}\curvearrowright {{\mathbb {C}}}^n(z)\) 及其通常的 R 矩阵 \(R(z) \in \text {End}({{\mathbb {C}}}^n \otimes {{\mathbb {C}}^n)(z)\) 开始(见 Faddeev et al.Leningrad Math J 1:193-226, 1990)。这个构造的一个结果是在\({U_{q、{{\overline{q}}}}(\ddot{\mathfrak {gl}}}_n)}\) 上的新拓扑共积,它扩展了水平子代数 \({U_q({\ddot{{\mathfrak {gl}}}}_n)}subset {U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}\) 上的 Drinfeld-Jimbo 共积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A tale of two shuffle algebras

A tale of two shuffle algebras

As a quantum affinization, the quantum toroidal algebra \({U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}\) is defined in terms of its “left” and “right” halves, which both admit shuffle algebra presentations (Enriquez in Transform Groups 5(2):111–120, 2000; Feigin and Odesskii in Am Math Soc Transl Ser 2:185, 1998). In the present paper, we take an orthogonal viewpoint, and give shuffle algebra presentations for the “top” and “bottom” halves instead, starting from the evaluation representation \({U_q({\dot{{\mathfrak {gl}}}}_n)}\curvearrowright {{\mathbb {C}}}^n(z)\) and its usual R-matrix \(R(z) \in \text {End}({{\mathbb {C}}}^n \otimes {{\mathbb {C}}}^n)(z)\) (see Faddeev et al. in Leningrad Math J 1:193–226, 1990). An upshot of this construction is a new topological coproduct on \({U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}\) which extends the Drinfeld–Jimbo coproduct on the horizontal subalgebra \({U_q({\dot{{\mathfrak {gl}}}}_n)}\subset {U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信