带复用的无穷动作逻辑的超算术复杂性

IF 0.6 4区 数学 Q2 LOGIC
Tikhon Pshenitsyn
{"title":"带复用的无穷动作逻辑的超算术复杂性","authors":"Tikhon Pshenitsyn","doi":"10.1093/jigpal/jzae078","DOIUrl":null,"url":null,"abstract":"In 2023, Kuznetsov and Speranski introduced infinitary action logic with multiplexing $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ and proved that the derivability problem for it lies between the $\\omega $ level and the $\\omega ^{\\omega }$ level of the hyperarithmetical hierarchy. We prove that this problem is $\\varDelta ^{0}_{\\omega ^{\\omega }}$-complete under Turing reductions. Namely, we show that it is recursively isomorphic to the satisfaction predicate for computable infinitary formulas of rank less than $\\omega ^{\\omega }$ in the language of arithmetic. As a consequence we prove that the closure ordinal for $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ equals $\\omega ^{\\omega }$. We also prove that the fragment of $!^{m}\\nabla \\textrm{ACT}_{\\omega }$ where Kleene star is not allowed to be in the scope of the subexponential is $\\varDelta ^{0}_{\\omega ^{\\omega }}$-complete. Finally, we present a family of logics, which are fragments of $!^{m}\\nabla \\textrm{ACT}_{\\omega }$, such that the complexity of the $k$-th logic lies between $\\varDelta ^{0}_{\\omega ^{k}}$ and $\\varDelta ^{0}_{\\omega ^{k+1}}$.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"51 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperarithmetical complexity of infinitary action logic with multiplexing\",\"authors\":\"Tikhon Pshenitsyn\",\"doi\":\"10.1093/jigpal/jzae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2023, Kuznetsov and Speranski introduced infinitary action logic with multiplexing $!^{m}\\\\nabla \\\\textrm{ACT}_{\\\\omega }$ and proved that the derivability problem for it lies between the $\\\\omega $ level and the $\\\\omega ^{\\\\omega }$ level of the hyperarithmetical hierarchy. We prove that this problem is $\\\\varDelta ^{0}_{\\\\omega ^{\\\\omega }}$-complete under Turing reductions. Namely, we show that it is recursively isomorphic to the satisfaction predicate for computable infinitary formulas of rank less than $\\\\omega ^{\\\\omega }$ in the language of arithmetic. As a consequence we prove that the closure ordinal for $!^{m}\\\\nabla \\\\textrm{ACT}_{\\\\omega }$ equals $\\\\omega ^{\\\\omega }$. We also prove that the fragment of $!^{m}\\\\nabla \\\\textrm{ACT}_{\\\\omega }$ where Kleene star is not allowed to be in the scope of the subexponential is $\\\\varDelta ^{0}_{\\\\omega ^{\\\\omega }}$-complete. Finally, we present a family of logics, which are fragments of $!^{m}\\\\nabla \\\\textrm{ACT}_{\\\\omega }$, such that the complexity of the $k$-th logic lies between $\\\\varDelta ^{0}_{\\\\omega ^{k}}$ and $\\\\varDelta ^{0}_{\\\\omega ^{k+1}}$.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae078\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae078","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

2023 年,库兹涅佐夫(Kuznetsov)和斯佩兰斯基(Speranski)提出了具有复用 $!^{m}\nabla \textrm{ACT}_{\omega }$ 的无穷动作逻辑,并证明了它的可推导性问题位于超算术层次结构的 $\omega $ 层和 $\omega ^{\omega }$ 层之间。我们证明这个问题在图灵还原下是 $\varDelta ^{0}_{\omega ^{\omega }}$ 完全的。也就是说,我们证明它与算术语言中秩小于 $\omega ^{\omega }$ 的可计算无穷公式的满足谓词递归同构。因此,我们证明 $!^{m}\nabla \textrm{ACT}_{\omega }$ 的闭包序数等于 $\omega ^{\omega }$。我们还证明了$!^{m}\nabla \textrm{ACT}_{\omega }$中不允许克莱因星出现在次指数范围内的片段是$\varDelta ^{0}_{\omega ^{\omega }$完备的。最后,我们提出了一系列逻辑,它们是 $!^{m}\nabla \textrm{ACT}_{\omega }$ 的片段,使得 $k$-th 逻辑的复杂度介于 $\varDelta ^{0}_{\omega ^{k}$ 和 $\varDelta ^{0}_{\omega ^{k+1}}$ 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperarithmetical complexity of infinitary action logic with multiplexing
In 2023, Kuznetsov and Speranski introduced infinitary action logic with multiplexing $!^{m}\nabla \textrm{ACT}_{\omega }$ and proved that the derivability problem for it lies between the $\omega $ level and the $\omega ^{\omega }$ level of the hyperarithmetical hierarchy. We prove that this problem is $\varDelta ^{0}_{\omega ^{\omega }}$-complete under Turing reductions. Namely, we show that it is recursively isomorphic to the satisfaction predicate for computable infinitary formulas of rank less than $\omega ^{\omega }$ in the language of arithmetic. As a consequence we prove that the closure ordinal for $!^{m}\nabla \textrm{ACT}_{\omega }$ equals $\omega ^{\omega }$. We also prove that the fragment of $!^{m}\nabla \textrm{ACT}_{\omega }$ where Kleene star is not allowed to be in the scope of the subexponential is $\varDelta ^{0}_{\omega ^{\omega }}$-complete. Finally, we present a family of logics, which are fragments of $!^{m}\nabla \textrm{ACT}_{\omega }$, such that the complexity of the $k$-th logic lies between $\varDelta ^{0}_{\omega ^{k}}$ and $\varDelta ^{0}_{\omega ^{k+1}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信