用于高速钢干磨的 NB 砂轮:特定加工能量和能效

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. I. Lavrinenko
{"title":"用于高速钢干磨的 NB 砂轮:特定加工能量和能效","authors":"V. I. Lavrinenko","doi":"10.3103/S1063457624020047","DOIUrl":null,"url":null,"abstract":"<p>Research on grinding high-speed steel with cubic boron nitride wheels has revealed challenges in evaluating the energy efficiency of grinding with diamond abrasive wheels made of superhard materials (SHMs) for hard-to-machine tool materials. These challenges arise due to the specific energy consumption index of the grinding process, which determines the ratio of effective grinding power. In addition to considering specific energy consumption and the energy efficiency coefficient of the process corresponding to the processing process, it is imperative to account for the wear of diamond abrasive wheels through the index of relative consumption of SHM grains in the working layer of the wheel during grinding. A novel relationship for calculating the energy efficiency coefficient (EEC) for diamond abrasive processing with SHM wheels has been proposed. It has been demonstrated that reducing the temperature in the grinding zone enhances the energy EEC. To achieve this temperature reduction, it is advisable to avoid metallic coating on the grains of SHMs and instead utilize an increased concentration of SHM grains in the working layer of the wheel. This adjustment results in an augmentation of the energy EEC, as elucidated by the proposed equation for calculating the EEC.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 2","pages":"154 - 160"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"СNB Wheels for Dry Grinding High-Speed Steel: Specific Processing Energy and Energy Efficiency\",\"authors\":\"V. I. Lavrinenko\",\"doi\":\"10.3103/S1063457624020047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research on grinding high-speed steel with cubic boron nitride wheels has revealed challenges in evaluating the energy efficiency of grinding with diamond abrasive wheels made of superhard materials (SHMs) for hard-to-machine tool materials. These challenges arise due to the specific energy consumption index of the grinding process, which determines the ratio of effective grinding power. In addition to considering specific energy consumption and the energy efficiency coefficient of the process corresponding to the processing process, it is imperative to account for the wear of diamond abrasive wheels through the index of relative consumption of SHM grains in the working layer of the wheel during grinding. A novel relationship for calculating the energy efficiency coefficient (EEC) for diamond abrasive processing with SHM wheels has been proposed. It has been demonstrated that reducing the temperature in the grinding zone enhances the energy EEC. To achieve this temperature reduction, it is advisable to avoid metallic coating on the grains of SHMs and instead utilize an increased concentration of SHM grains in the working layer of the wheel. This adjustment results in an augmentation of the energy EEC, as elucidated by the proposed equation for calculating the EEC.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"46 2\",\"pages\":\"154 - 160\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457624020047\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624020047","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 有关使用立方氮化硼砂轮磨削高速钢的研究表明,在评估使用超硬材料(SHM)金刚石砂轮磨削难加工刀具材料的能效方面存在挑战。这些挑战的产生是由于磨削过程的特定能耗指数决定了有效磨削功率的比率。除了考虑与加工过程相对应的特定能耗和过程能效系数外,还必须通过金刚石砂轮工作层中的 SHM 磨粒在磨削过程中的相对消耗指数来考虑金刚石砂轮的磨损。有人提出了一种新的关系,用于计算使用 SHM 砂轮进行金刚石磨料加工时的能效系数 (EEC)。实验证明,降低磨削区域的温度可提高能效系数。为了降低温度,最好避免在 SHM 磨粒上覆盖金属涂层,而是在砂轮的工作层中增加 SHM 磨粒的浓度。这一调整可提高能量等效物效应,这一点已通过所提出的等效物效应计算公式得到阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
СNB Wheels for Dry Grinding High-Speed Steel: Specific Processing Energy and Energy Efficiency

Research on grinding high-speed steel with cubic boron nitride wheels has revealed challenges in evaluating the energy efficiency of grinding with diamond abrasive wheels made of superhard materials (SHMs) for hard-to-machine tool materials. These challenges arise due to the specific energy consumption index of the grinding process, which determines the ratio of effective grinding power. In addition to considering specific energy consumption and the energy efficiency coefficient of the process corresponding to the processing process, it is imperative to account for the wear of diamond abrasive wheels through the index of relative consumption of SHM grains in the working layer of the wheel during grinding. A novel relationship for calculating the energy efficiency coefficient (EEC) for diamond abrasive processing with SHM wheels has been proposed. It has been demonstrated that reducing the temperature in the grinding zone enhances the energy EEC. To achieve this temperature reduction, it is advisable to avoid metallic coating on the grains of SHMs and instead utilize an increased concentration of SHM grains in the working layer of the wheel. This adjustment results in an augmentation of the energy EEC, as elucidated by the proposed equation for calculating the EEC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superhard Materials
Journal of Superhard Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
66.70%
发文量
26
审稿时长
2 months
期刊介绍: Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信