Ragıp Yıldırım, Abdullah Yıldız, Azim Doğuş Tuncer
{"title":"小型水-水热泵系统中氢氟碳化合物/氢氟烯烃二元混合物的实验评估","authors":"Ragıp Yıldırım, Abdullah Yıldız, Azim Doğuş Tuncer","doi":"10.1615/heattransres.2024054108","DOIUrl":null,"url":null,"abstract":"In this study, two different hydrochlorofluorocarbon (HFC) / Hydrofluoroolefin (HFO) binary blends (R134a/R1234yf (75/25) and R134a/R1234yf (25/75)) are studied experimentally. Energetic, exergetic and LCCP (life cycle climate performance) evaluations of the heat pump for HFC/HFO binary blends were carried out. In the literature, no studies are available on the use of HFC/HFO in heat pumps or cooling systems at these blend ratios. This study differs from previous studies on HFC/HFO binary mixtures. Therefore, it will contribute to the literature on binary HFC/HFO blends with lower global warming potential (GWP). HFC/HFO binary blends for different temperature of evaporator (-10 °C, -5 °C, 0 °C) and fixed temperature of condenser (35 °C) were studied. The performance of R134a/R1234yf (75/25) refrigerant blend is superior to R134a/R1234yf (25/75) refrigerant blend based on the 1st and 2nd laws of thermodynamics. Although the GWP of R134a/R1234yf (75/25) is higher than that of R134a/R1234yf (25/75), R134a/R1234yf (75/25) has a relatively smaller total LCCP than R134a/R1234yf (25/75). Low GWP is not the only criterion for selecting a refrigerant. Energy and exergy are also important. Because an important part of the overall system emissions of the heat pump is seen to be caused by the consumption of energy.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of HFC/HFO binary mixtures in a small-scale water-to-water heat pump system\",\"authors\":\"Ragıp Yıldırım, Abdullah Yıldız, Azim Doğuş Tuncer\",\"doi\":\"10.1615/heattransres.2024054108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, two different hydrochlorofluorocarbon (HFC) / Hydrofluoroolefin (HFO) binary blends (R134a/R1234yf (75/25) and R134a/R1234yf (25/75)) are studied experimentally. Energetic, exergetic and LCCP (life cycle climate performance) evaluations of the heat pump for HFC/HFO binary blends were carried out. In the literature, no studies are available on the use of HFC/HFO in heat pumps or cooling systems at these blend ratios. This study differs from previous studies on HFC/HFO binary mixtures. Therefore, it will contribute to the literature on binary HFC/HFO blends with lower global warming potential (GWP). HFC/HFO binary blends for different temperature of evaporator (-10 °C, -5 °C, 0 °C) and fixed temperature of condenser (35 °C) were studied. The performance of R134a/R1234yf (75/25) refrigerant blend is superior to R134a/R1234yf (25/75) refrigerant blend based on the 1st and 2nd laws of thermodynamics. Although the GWP of R134a/R1234yf (75/25) is higher than that of R134a/R1234yf (25/75), R134a/R1234yf (75/25) has a relatively smaller total LCCP than R134a/R1234yf (25/75). Low GWP is not the only criterion for selecting a refrigerant. Energy and exergy are also important. Because an important part of the overall system emissions of the heat pump is seen to be caused by the consumption of energy.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024054108\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024054108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Experimental evaluation of HFC/HFO binary mixtures in a small-scale water-to-water heat pump system
In this study, two different hydrochlorofluorocarbon (HFC) / Hydrofluoroolefin (HFO) binary blends (R134a/R1234yf (75/25) and R134a/R1234yf (25/75)) are studied experimentally. Energetic, exergetic and LCCP (life cycle climate performance) evaluations of the heat pump for HFC/HFO binary blends were carried out. In the literature, no studies are available on the use of HFC/HFO in heat pumps or cooling systems at these blend ratios. This study differs from previous studies on HFC/HFO binary mixtures. Therefore, it will contribute to the literature on binary HFC/HFO blends with lower global warming potential (GWP). HFC/HFO binary blends for different temperature of evaporator (-10 °C, -5 °C, 0 °C) and fixed temperature of condenser (35 °C) were studied. The performance of R134a/R1234yf (75/25) refrigerant blend is superior to R134a/R1234yf (25/75) refrigerant blend based on the 1st and 2nd laws of thermodynamics. Although the GWP of R134a/R1234yf (75/25) is higher than that of R134a/R1234yf (25/75), R134a/R1234yf (75/25) has a relatively smaller total LCCP than R134a/R1234yf (25/75). Low GWP is not the only criterion for selecting a refrigerant. Energy and exergy are also important. Because an important part of the overall system emissions of the heat pump is seen to be caused by the consumption of energy.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.