关于通过局部分数积分修正的辛普森式不等式

IF 0.8 4区 数学 Q2 MATHEMATICS
Abdelghani Lakhdari, Badreddine Meftah, Wedad Saleh
{"title":"关于通过局部分数积分修正的辛普森式不等式","authors":"Abdelghani Lakhdari, Badreddine Meftah, Wedad Saleh","doi":"10.1515/gmj-2024-2030","DOIUrl":null,"url":null,"abstract":"The paper discusses corrected Simpson-type inequalities on fractal sets. Based on an introduced identity, we establish some error bounds for the considered formula using the generalized <jats:italic>s</jats:italic>-convexity and <jats:italic>s</jats:italic>-concavity of the local fractional derivative. Finally, we present some graphical representations justifying the established theoretical framework as well as some applications.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On corrected Simpson-type inequalities via local fractional integrals\",\"authors\":\"Abdelghani Lakhdari, Badreddine Meftah, Wedad Saleh\",\"doi\":\"10.1515/gmj-2024-2030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses corrected Simpson-type inequalities on fractal sets. Based on an introduced identity, we establish some error bounds for the considered formula using the generalized <jats:italic>s</jats:italic>-convexity and <jats:italic>s</jats:italic>-concavity of the local fractional derivative. Finally, we present some graphical representations justifying the established theoretical framework as well as some applications.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了分形集上的修正辛普森式不等式。基于引入的特性,我们利用局部分形导数的广义 s 凸性和 s 凹性为所考虑的公式建立了一些误差边界。最后,我们给出了一些图形表示,证明了所建立的理论框架以及一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On corrected Simpson-type inequalities via local fractional integrals
The paper discusses corrected Simpson-type inequalities on fractal sets. Based on an introduced identity, we establish some error bounds for the considered formula using the generalized s-convexity and s-concavity of the local fractional derivative. Finally, we present some graphical representations justifying the established theoretical framework as well as some applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信