典型高属双曲面上狄拉克算子的谱收敛性

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Laura Monk, Rareş Stan
{"title":"典型高属双曲面上狄拉克算子的谱收敛性","authors":"Laura Monk, Rareş Stan","doi":"10.1007/s00023-024-01452-z","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the Dirac spectrum of typical hyperbolic surfaces of finite area, equipped with a nontrivial spin structure (so that the Dirac spectrum is discrete). For random Weil–Petersson surfaces of large genus <i>g</i> with <span>\\(o(\\sqrt{g})\\)</span> cusps, we prove convergence of the spectral density to the spectral density of the hyperbolic plane, with quantitative error estimates. This result implies upper bounds on spectral counting functions and multiplicities, as well as a uniform Weyl law, true for typical hyperbolic surfaces equipped with any nontrivial spin structure.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Convergence of the Dirac Operator on Typical Hyperbolic Surfaces of High Genus\",\"authors\":\"Laura Monk, Rareş Stan\",\"doi\":\"10.1007/s00023-024-01452-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the Dirac spectrum of typical hyperbolic surfaces of finite area, equipped with a nontrivial spin structure (so that the Dirac spectrum is discrete). For random Weil–Petersson surfaces of large genus <i>g</i> with <span>\\\\(o(\\\\sqrt{g})\\\\)</span> cusps, we prove convergence of the spectral density to the spectral density of the hyperbolic plane, with quantitative error estimates. This result implies upper bounds on spectral counting functions and multiplicities, as well as a uniform Weyl law, true for typical hyperbolic surfaces equipped with any nontrivial spin structure.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01452-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01452-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了典型的有限面积双曲面的狄拉克谱,这些双曲面都具有非偶数自旋结构(因此狄拉克谱是离散的)。对于具有 \(o(\sqrt{g})\) 尖点的大属g的随机魏尔-彼得森曲面,我们证明了其谱密度向双曲面谱密度的收敛性,并给出了定量误差估计。这一结果意味着谱计数函数和乘数的上限,以及统一的韦尔定律,这对于配备任何非难自旋结构的典型双曲面来说都是真实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Convergence of the Dirac Operator on Typical Hyperbolic Surfaces of High Genus

In this article, we study the Dirac spectrum of typical hyperbolic surfaces of finite area, equipped with a nontrivial spin structure (so that the Dirac spectrum is discrete). For random Weil–Petersson surfaces of large genus g with \(o(\sqrt{g})\) cusps, we prove convergence of the spectral density to the spectral density of the hyperbolic plane, with quantitative error estimates. This result implies upper bounds on spectral counting functions and multiplicities, as well as a uniform Weyl law, true for typical hyperbolic surfaces equipped with any nontrivial spin structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信