线性系统结构草图

Johannes J Brust, Michael A Saunders
{"title":"线性系统结构草图","authors":"Johannes J Brust, Michael A Saunders","doi":"arxiv-2407.00746","DOIUrl":null,"url":null,"abstract":"For linear systems $Ax=b$ we develop iterative algorithms based on a\nsketch-and-project approach. By using judicious choices for the sketch, such as\nthe history of residuals, we develop weighting strategies that enable short\nrecursive formulas. The proposed algorithms have a low memory footprint and\niteration complexity compared to regular sketch-and-project methods. In a set\nof numerical experiments the new methods compare well to GMRES, SYMMLQ and\nstate-of-the-art randomized solvers.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured Sketching for Linear Systems\",\"authors\":\"Johannes J Brust, Michael A Saunders\",\"doi\":\"arxiv-2407.00746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For linear systems $Ax=b$ we develop iterative algorithms based on a\\nsketch-and-project approach. By using judicious choices for the sketch, such as\\nthe history of residuals, we develop weighting strategies that enable short\\nrecursive formulas. The proposed algorithms have a low memory footprint and\\niteration complexity compared to regular sketch-and-project methods. In a set\\nof numerical experiments the new methods compare well to GMRES, SYMMLQ and\\nstate-of-the-art randomized solvers.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于线性系统 $Ax=b$,我们开发了基于 "求取和项目 "方法的迭代算法。通过对草图(如残差的历史)的明智选择,我们开发出了加权策略,从而实现了短递归公式。与常规的草图-项目法相比,所提出的算法具有较低的内存占用和运算复杂度。在一组数值实验中,新方法与 GMRES、SYMMLQ 和最先进的随机求解器相比都有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured Sketching for Linear Systems
For linear systems $Ax=b$ we develop iterative algorithms based on a sketch-and-project approach. By using judicious choices for the sketch, such as the history of residuals, we develop weighting strategies that enable short recursive formulas. The proposed algorithms have a low memory footprint and iteration complexity compared to regular sketch-and-project methods. In a set of numerical experiments the new methods compare well to GMRES, SYMMLQ and state-of-the-art randomized solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信