纤维提升的部分双曲差分同位类中的动态一致性

IF 1 3区 数学 Q1 MATHEMATICS
Luis Pedro Piñeyrúa, Martín Sambarino
{"title":"纤维提升的部分双曲差分同位类中的动态一致性","authors":"Luis Pedro Piñeyrúa, Martín Sambarino","doi":"10.1007/s00209-024-03535-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of <i>fibered lifted partially hyperbolic diffeomorphisms</i> and we prove that any partially hyperbolic diffeomorphism isotopic to a fibered lifted one where the isotopy take place inside partially hyperbolic systems is dynamically coherent. Moreover we prove some global stability result: every two partially hyperbolic diffeomorphisms in the same connected component of a fibered lifted partially hyperbolic diffeomorphisms are leaf conjugate.\n</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical coherence in isotopy classes of fibered lifted partially hyperbolic diffeomorphisms\",\"authors\":\"Luis Pedro Piñeyrúa, Martín Sambarino\",\"doi\":\"10.1007/s00209-024-03535-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of <i>fibered lifted partially hyperbolic diffeomorphisms</i> and we prove that any partially hyperbolic diffeomorphism isotopic to a fibered lifted one where the isotopy take place inside partially hyperbolic systems is dynamically coherent. Moreover we prove some global stability result: every two partially hyperbolic diffeomorphisms in the same connected component of a fibered lifted partially hyperbolic diffeomorphisms are leaf conjugate.\\n</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03535-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03535-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了纤维化提升的部分双曲差分形的概念,并证明了任何与纤维化提升的部分双曲差分形同构的部分双曲差分形(同构发生在部分双曲系统内部)都是动态相干的。此外,我们还证明了一些全局稳定性结果:在纤维化提升的部分双曲差分的同一连通分量中,每两个部分双曲差分都是叶共轭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamical coherence in isotopy classes of fibered lifted partially hyperbolic diffeomorphisms

Dynamical coherence in isotopy classes of fibered lifted partially hyperbolic diffeomorphisms

We introduce the notion of fibered lifted partially hyperbolic diffeomorphisms and we prove that any partially hyperbolic diffeomorphism isotopic to a fibered lifted one where the isotopy take place inside partially hyperbolic systems is dynamically coherent. Moreover we prove some global stability result: every two partially hyperbolic diffeomorphisms in the same connected component of a fibered lifted partially hyperbolic diffeomorphisms are leaf conjugate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信