多分辨率低阶张量分解

Sergio Rozada, Antonio G. Marques
{"title":"多分辨率低阶张量分解","authors":"Sergio Rozada, Antonio G. Marques","doi":"arxiv-2406.18560","DOIUrl":null,"url":null,"abstract":"The (efficient and parsimonious) decomposition of higher-order tensors is a\nfundamental problem with numerous applications in a variety of fields. Several\nmethods have been proposed in the literature to that end, with the Tucker and\nPARAFAC decompositions being the most prominent ones. Inspired by the latter,\nin this work we propose a multi-resolution low-rank tensor decomposition to\ndescribe (approximate) a tensor in a hierarchical fashion. The central idea of\nthe decomposition is to recast the tensor into \\emph{multiple}\nlower-dimensional tensors to exploit the structure at different levels of\nresolution. The method is first explained, an alternating least squares\nalgorithm is discussed, and preliminary simulations illustrating the potential\npractical relevance are provided.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-resolution Low-rank Tensor Decomposition\",\"authors\":\"Sergio Rozada, Antonio G. Marques\",\"doi\":\"arxiv-2406.18560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The (efficient and parsimonious) decomposition of higher-order tensors is a\\nfundamental problem with numerous applications in a variety of fields. Several\\nmethods have been proposed in the literature to that end, with the Tucker and\\nPARAFAC decompositions being the most prominent ones. Inspired by the latter,\\nin this work we propose a multi-resolution low-rank tensor decomposition to\\ndescribe (approximate) a tensor in a hierarchical fashion. The central idea of\\nthe decomposition is to recast the tensor into \\\\emph{multiple}\\nlower-dimensional tensors to exploit the structure at different levels of\\nresolution. The method is first explained, an alternating least squares\\nalgorithm is discussed, and preliminary simulations illustrating the potential\\npractical relevance are provided.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高阶张量的(高效、简洁)分解是一个基本问题,在各个领域都有大量应用。为此,文献中提出了几种方法,其中最著名的是塔克分解和 PARAFAC 分解。受后者的启发,我们在这项工作中提出了一种多分辨率低秩张量分解法,以分层方式描述(近似)一个张量。分解的核心思想是将张量重铸成低维张量,以利用不同分辨率级别的结构。首先对该方法进行了解释,讨论了交替最小二乘法,并提供了初步模拟,说明了其潜在的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-resolution Low-rank Tensor Decomposition
The (efficient and parsimonious) decomposition of higher-order tensors is a fundamental problem with numerous applications in a variety of fields. Several methods have been proposed in the literature to that end, with the Tucker and PARAFAC decompositions being the most prominent ones. Inspired by the latter, in this work we propose a multi-resolution low-rank tensor decomposition to describe (approximate) a tensor in a hierarchical fashion. The central idea of the decomposition is to recast the tensor into \emph{multiple} lower-dimensional tensors to exploit the structure at different levels of resolution. The method is first explained, an alternating least squares algorithm is discussed, and preliminary simulations illustrating the potential practical relevance are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信