涉及黎曼zeta函数、斐波纳契数和卢卡斯数的一些级数

Akerele Olofin Segun
{"title":"涉及黎曼zeta函数、斐波纳契数和卢卡斯数的一些级数","authors":"Akerele Olofin Segun","doi":"arxiv-2406.16922","DOIUrl":null,"url":null,"abstract":"The objective of this manuscript is to offer explicit expressions for diverse\ncategories of infinite series incorporating the Fibonacci (Lucas) sequence and\nthe Riemann zeta function. In demonstrating our findings, we will utilize\nconventional methodologies and integrate the Binet formulas pertinent to these\nsequences with generating functions that encompass the Riemann zeta function\nalongside established evaluations of certain series.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Classes of series involving the Riemann zeta function, Fibonacci numbers and the Lucas numbers\",\"authors\":\"Akerele Olofin Segun\",\"doi\":\"arxiv-2406.16922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this manuscript is to offer explicit expressions for diverse\\ncategories of infinite series incorporating the Fibonacci (Lucas) sequence and\\nthe Riemann zeta function. In demonstrating our findings, we will utilize\\nconventional methodologies and integrate the Binet formulas pertinent to these\\nsequences with generating functions that encompass the Riemann zeta function\\nalongside established evaluations of certain series.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本手稿旨在为包含斐波那契(卢卡斯)序列和黎曼zeta函数的无穷级数的不同类别提供明确的表达式。在展示我们的发现时,我们将利用常规方法,并将与这些序列相关的比奈公式与包含黎曼zeta函数的生成函数以及某些数列的既定求值结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Classes of series involving the Riemann zeta function, Fibonacci numbers and the Lucas numbers
The objective of this manuscript is to offer explicit expressions for diverse categories of infinite series incorporating the Fibonacci (Lucas) sequence and the Riemann zeta function. In demonstrating our findings, we will utilize conventional methodologies and integrate the Binet formulas pertinent to these sequences with generating functions that encompass the Riemann zeta function alongside established evaluations of certain series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信