桥图中的量子最大流

Pub Date : 2024-07-03 DOI:10.1007/s00031-024-09863-2
Fulvio Gesmundo, Vladimir Lysikov, Vincent Steffan
{"title":"桥图中的量子最大流","authors":"Fulvio Gesmundo, Vladimir Lysikov, Vincent Steffan","doi":"10.1007/s00031-024-09863-2","DOIUrl":null,"url":null,"abstract":"<p>The quantum max-flow is a linear algebraic version of the classical max-flow of a graph, used in quantum many-body physics to quantify the maximal possible entanglement between two regions of a tensor network state. In this work, we calculate the quantum max-flow exactly in the case of the <i>bridge graph</i>. The result is achieved by drawing connections to the theory of prehomogenous tensor spaces and the representation theory of quivers. Further, we highlight relations to invariant theory and to algebraic statistics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Max-flow in the Bridge Graph\",\"authors\":\"Fulvio Gesmundo, Vladimir Lysikov, Vincent Steffan\",\"doi\":\"10.1007/s00031-024-09863-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum max-flow is a linear algebraic version of the classical max-flow of a graph, used in quantum many-body physics to quantify the maximal possible entanglement between two regions of a tensor network state. In this work, we calculate the quantum max-flow exactly in the case of the <i>bridge graph</i>. The result is achieved by drawing connections to the theory of prehomogenous tensor spaces and the representation theory of quivers. Further, we highlight relations to invariant theory and to algebraic statistics.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09863-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09863-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子最大流是经典图最大流的线性代数版本,在量子多体物理学中用于量化张量网络状态两个区域之间可能存在的最大纠缠。在这项工作中,我们精确计算了桥图情况下的量子最大流。这一结果是通过与前同质张量空间理论和振子表示理论的联系得出的。此外,我们还强调了与不变理论和代数统计的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum Max-flow in the Bridge Graph

分享
查看原文
Quantum Max-flow in the Bridge Graph

The quantum max-flow is a linear algebraic version of the classical max-flow of a graph, used in quantum many-body physics to quantify the maximal possible entanglement between two regions of a tensor network state. In this work, we calculate the quantum max-flow exactly in the case of the bridge graph. The result is achieved by drawing connections to the theory of prehomogenous tensor spaces and the representation theory of quivers. Further, we highlight relations to invariant theory and to algebraic statistics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信