多面体上的 SL n 逆矩阵值

IF 0.9 2区 数学 Q2 MATHEMATICS
Chunna Zeng, Yuqi Zhou
{"title":"多面体上的 SL n 逆矩阵值","authors":"Chunna Zeng, Yuqi Zhou","doi":"10.1093/imrn/rnae122","DOIUrl":null,"url":null,"abstract":"Without any continuity assumptions, a complete classification of $\\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\\textrm{SL}(2)$-equivariant matrix-valued valuation.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SL n Contravariant Matrix-Valued Valuations on Polytopes\",\"authors\":\"Chunna Zeng, Yuqi Zhou\",\"doi\":\"10.1093/imrn/rnae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without any continuity assumptions, a complete classification of $\\\\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\\\\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\\\\textrm{SL}(2)$-equivariant matrix-valued valuation.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在没有任何连续性假设的情况下,建立了凸多面体上$\textrm{SL}(n)$ 避变、矩阵值估值的完整分类。此外,矩阵对称性的约束也被消除了。如果 $n\geq 4$,那么这种估值的唯一特征是通用的卢特瓦克-杨-张矩阵;在三维中,会出现一个新函数。二维情况下的分类结果与$\textrm{SL}(2)$-等变矩阵值估值的既定例子是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SL n Contravariant Matrix-Valued Valuations on Polytopes
Without any continuity assumptions, a complete classification of $\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\textrm{SL}(2)$-equivariant matrix-valued valuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信