多面体上的 SL n 逆矩阵值

Pub Date : 2024-06-11 DOI:10.1093/imrn/rnae122
Chunna Zeng, Yuqi Zhou
{"title":"多面体上的 SL n 逆矩阵值","authors":"Chunna Zeng, Yuqi Zhou","doi":"10.1093/imrn/rnae122","DOIUrl":null,"url":null,"abstract":"Without any continuity assumptions, a complete classification of $\\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\\textrm{SL}(2)$-equivariant matrix-valued valuation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SL n Contravariant Matrix-Valued Valuations on Polytopes\",\"authors\":\"Chunna Zeng, Yuqi Zhou\",\"doi\":\"10.1093/imrn/rnae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without any continuity assumptions, a complete classification of $\\\\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\\\\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\\\\textrm{SL}(2)$-equivariant matrix-valued valuation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在没有任何连续性假设的情况下,建立了凸多面体上$\textrm{SL}(n)$ 避变、矩阵值估值的完整分类。此外,矩阵对称性的约束也被消除了。如果 $n\geq 4$,那么这种估值的唯一特征是通用的卢特瓦克-杨-张矩阵;在三维中,会出现一个新函数。二维情况下的分类结果与$\textrm{SL}(2)$-等变矩阵值估值的既定例子是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
SL n Contravariant Matrix-Valued Valuations on Polytopes
Without any continuity assumptions, a complete classification of $\textrm{SL}(n)$ contravariant, matrix-valued valuations on convex polytopes is established. Furthermore, the constraint for matrix symmetry is removed. If $n\geq 4$, then such valuations are uniquely characterized by the generic Lutwak–Yang–Zhang matrix; in dimension three, a new function appears. The classification result in the 2-dimensional case is consistent with the established example of $\textrm{SL}(2)$-equivariant matrix-valued valuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信