字符变体的形态

Pub Date : 2024-06-13 DOI:10.1093/imrn/rnae124
Sean Cotner
{"title":"字符变体的形态","authors":"Sean Cotner","doi":"10.1093/imrn/rnae124","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field, let $H \\subset G$ be (possibly disconnected) reductive groups over $k$, and let $\\Gamma $ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $\\underline{\\operatorname{Hom}}_{k\\textrm{-gp}}(\\Gamma , H)//H \\to \\underline{\\operatorname{Hom}}_{k\\textrm{-gp}}(\\Gamma , G)//G$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $k$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphisms of Character Varieties\",\"authors\":\"Sean Cotner\",\"doi\":\"10.1093/imrn/rnae124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a field, let $H \\\\subset G$ be (possibly disconnected) reductive groups over $k$, and let $\\\\Gamma $ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $\\\\underline{\\\\operatorname{Hom}}_{k\\\\textrm{-gp}}(\\\\Gamma , H)//H \\\\to \\\\underline{\\\\operatorname{Hom}}_{k\\\\textrm{-gp}}(\\\\Gamma , G)//G$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $k$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $k$ 是一个域,让 $H \subset G$ 是 $k$ 上的(可能不相连的)还原群,让 $\Gamma $ 是一个有限生成的群。文伯格和马丁证明了诱导态 $\underline{operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$ 是有限的。在本注释中,我们通过用任意局部诺特方案代替 $k$,对这一结果进行了概括(证明方法大为不同),从而回答了达的一个问题。在此过程中,我们利用布鲁哈特-提茨理论建立了一些关于离散估值环上还原群积分模型的明显新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Morphisms of Character Varieties
Let $k$ be a field, let $H \subset G$ be (possibly disconnected) reductive groups over $k$, and let $\Gamma $ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $\underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $k$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信