论小集合的局部傅里叶均匀性问题

Pub Date : 2024-06-21 DOI:10.1093/imrn/rnae134
Adam Kanigowski, Mariusz Lemańczyk, Florian K Richter, Joni Teräväinen
{"title":"论小集合的局部傅里叶均匀性问题","authors":"Adam Kanigowski, Mariusz Lemańczyk, Florian K Richter, Joni Teräväinen","doi":"10.1093/imrn/rnae134","DOIUrl":null,"url":null,"abstract":"We consider vanishing properties of exponential sums of the Liouville function $\\boldsymbol{\\lambda }$ of the form $$ \\begin{align*} & \\lim_{H\\to\\infty}\\limsup_{X\\to\\infty}\\frac{1}{\\log X}\\sum_{m\\leq X}\\frac{1}{m}\\sup_{\\alpha\\in C}\\bigg|\\frac{1}{H}\\sum_{h\\leq H}\\boldsymbol{\\lambda}(m+h)e^{2\\pi ih\\alpha}\\bigg|=0, \\end{align*} $$ where $C\\subset{{\\mathbb{T}}}$. The case $C={{\\mathbb{T}}}$ corresponds to the local $1$-Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $C\\subset{{\\mathbb{T}}}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $C$ with non-empty interior is equivalent to the $C={{\\mathbb{T}}}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $e^{2\\pi ih\\alpha }$ is replaced by a polynomial phase $e^{2\\pi ih^{t}\\alpha }$ for $t\\geq 2$ then the statement remains true for any set $C$ of upper box-counting dimension $< 1/t$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $t$-step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1$-Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Local Fourier Uniformity Problem for Small Sets\",\"authors\":\"Adam Kanigowski, Mariusz Lemańczyk, Florian K Richter, Joni Teräväinen\",\"doi\":\"10.1093/imrn/rnae134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider vanishing properties of exponential sums of the Liouville function $\\\\boldsymbol{\\\\lambda }$ of the form $$ \\\\begin{align*} & \\\\lim_{H\\\\to\\\\infty}\\\\limsup_{X\\\\to\\\\infty}\\\\frac{1}{\\\\log X}\\\\sum_{m\\\\leq X}\\\\frac{1}{m}\\\\sup_{\\\\alpha\\\\in C}\\\\bigg|\\\\frac{1}{H}\\\\sum_{h\\\\leq H}\\\\boldsymbol{\\\\lambda}(m+h)e^{2\\\\pi ih\\\\alpha}\\\\bigg|=0, \\\\end{align*} $$ where $C\\\\subset{{\\\\mathbb{T}}}$. The case $C={{\\\\mathbb{T}}}$ corresponds to the local $1$-Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $C\\\\subset{{\\\\mathbb{T}}}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $C$ with non-empty interior is equivalent to the $C={{\\\\mathbb{T}}}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $e^{2\\\\pi ih\\\\alpha }$ is replaced by a polynomial phase $e^{2\\\\pi ih^{t}\\\\alpha }$ for $t\\\\geq 2$ then the statement remains true for any set $C$ of upper box-counting dimension $< 1/t$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $t$-step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1$-Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑形式为 $$ \begin{align*} &;\lim_{H\to\infty}\limsup_{X\to\infty}\frac{1}{\log X}\sum_{m\leq X}\frac{1}{m}\sup_{\alpha\in C}\bigg|\frac{1}{H}\sum_{h\leq H}\boldsymbol{\lambda}(m+h)e^{2\pi ih\alpha}\bigg|=0, \end{align*}$$ 其中 $C(subset{{\mathbb{T}}}$)。$C={\{mathbb{T}}}$的情况对应于陶的局部$1$傅里叶均匀性猜想,这是乘法函数研究中的一个核心未决问题,在数论中有着深远的应用。我们证明上述猜想对于任何零 Lebesgue 度量的闭集 $C\subset{\{mathbb{T}}$ 都成立。此外,我们证明,将其扩展到任何具有非空内部的集合 $C$ 等于 $C={\{mathbb{T}}$ 的情况,这表明我们的结果本质上是最优的,而无需解决完整的猜想。我们还考虑了高阶变体。我们证明,如果线性相$e^{2\pi ih\alpha }$被多项式相$e^{2\pi ih^{t}\alpha }$替换为$t\geq 2$,那么对于任何上盒数维度为$< 1/t$的集合$C$,该声明仍然成立。如果将线性相位的上位替换为来自任意 $t$ 阶零potent Lie 群的紧凑可数遍历子集的所有零序列的上位,那么该声明也仍然成立。此外,我们还讨论了局部 1 美元-傅里叶均匀性问题的非加权版本,证明了它对一类 "刚性 "集合(全豪斯多夫维度)的有效性,并证明了所有勒贝格度量为零的封闭子集的密度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Local Fourier Uniformity Problem for Small Sets
We consider vanishing properties of exponential sums of the Liouville function $\boldsymbol{\lambda }$ of the form $$ \begin{align*} & \lim_{H\to\infty}\limsup_{X\to\infty}\frac{1}{\log X}\sum_{m\leq X}\frac{1}{m}\sup_{\alpha\in C}\bigg|\frac{1}{H}\sum_{h\leq H}\boldsymbol{\lambda}(m+h)e^{2\pi ih\alpha}\bigg|=0, \end{align*} $$ where $C\subset{{\mathbb{T}}}$. The case $C={{\mathbb{T}}}$ corresponds to the local $1$-Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $C\subset{{\mathbb{T}}}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $C$ with non-empty interior is equivalent to the $C={{\mathbb{T}}}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $e^{2\pi ih\alpha }$ is replaced by a polynomial phase $e^{2\pi ih^{t}\alpha }$ for $t\geq 2$ then the statement remains true for any set $C$ of upper box-counting dimension $< 1/t$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $t$-step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1$-Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信