预测金融机构服务中的客户目标:数据驱动的 LSTM 方法

Andrew Estornell, Stylianos Loukas Vasileiou, William Yeoh, Daniel Borrajo, Rui Silva
{"title":"预测金融机构服务中的客户目标:数据驱动的 LSTM 方法","authors":"Andrew Estornell, Stylianos Loukas Vasileiou, William Yeoh, Daniel Borrajo, Rui Silva","doi":"arxiv-2406.19399","DOIUrl":null,"url":null,"abstract":"In today's competitive financial landscape, understanding and anticipating\ncustomer goals is crucial for institutions to deliver a personalized and\noptimized user experience. This has given rise to the problem of accurately\npredicting customer goals and actions. Focusing on that problem, we use\nhistorical customer traces generated by a realistic simulator and present two\nsimple models for predicting customer goals and future actions -- an LSTM model\nand an LSTM model enhanced with state-space graph embeddings. Our results\ndemonstrate the effectiveness of these models when it comes to predicting\ncustomer goals and actions.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Customer Goals in Financial Institution Services: A Data-Driven LSTM Approach\",\"authors\":\"Andrew Estornell, Stylianos Loukas Vasileiou, William Yeoh, Daniel Borrajo, Rui Silva\",\"doi\":\"arxiv-2406.19399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's competitive financial landscape, understanding and anticipating\\ncustomer goals is crucial for institutions to deliver a personalized and\\noptimized user experience. This has given rise to the problem of accurately\\npredicting customer goals and actions. Focusing on that problem, we use\\nhistorical customer traces generated by a realistic simulator and present two\\nsimple models for predicting customer goals and future actions -- an LSTM model\\nand an LSTM model enhanced with state-space graph embeddings. Our results\\ndemonstrate the effectiveness of these models when it comes to predicting\\ncustomer goals and actions.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今竞争激烈的金融环境中,了解和预测客户目标对于机构提供个性化和优化的用户体验至关重要。这就产生了准确预测客户目标和行动的问题。针对这一问题,我们利用现实模拟器生成的历史客户痕迹,提出了预测客户目标和未来行动的两个简单模型--一个 LSTM 模型和一个用状态空间图嵌入增强的 LSTM 模型。我们的结果证明了这些模型在预测客户目标和行动方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Customer Goals in Financial Institution Services: A Data-Driven LSTM Approach
In today's competitive financial landscape, understanding and anticipating customer goals is crucial for institutions to deliver a personalized and optimized user experience. This has given rise to the problem of accurately predicting customer goals and actions. Focusing on that problem, we use historical customer traces generated by a realistic simulator and present two simple models for predicting customer goals and future actions -- an LSTM model and an LSTM model enhanced with state-space graph embeddings. Our results demonstrate the effectiveness of these models when it comes to predicting customer goals and actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信