内非退化混合函数奇点的链接

Raimundo N. Araújo dos Santos, Benjamin Bode, Eder L. Sanchez Quiceno
{"title":"内非退化混合函数奇点的链接","authors":"Raimundo N. Araújo dos Santos, Benjamin Bode, Eder L. Sanchez Quiceno","doi":"10.1007/s00574-024-00407-6","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of a (strongly) inner non-degenerate mixed function <span>\\(f:{\\mathbb {C}}^2\\rightarrow {\\mathbb {C}}.\\)</span> We show that inner non-degenerate mixed polynomials have weakly isolated singularities and strongly inner non-degenerate mixed polynomials have isolated singularities. Furthermore, under one additional assumption, which we call “<span>\\(\\Gamma \\)</span>-niceness”, the links of these singularities can be completely characterized in terms of the Newton boundary of <i>f</i>. In particular, adding terms above the Newton boundary does not affect the topology of the link.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"12352 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Links of Singularities of Inner Non-degenerate Mixed Functions\",\"authors\":\"Raimundo N. Araújo dos Santos, Benjamin Bode, Eder L. Sanchez Quiceno\",\"doi\":\"10.1007/s00574-024-00407-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of a (strongly) inner non-degenerate mixed function <span>\\\\(f:{\\\\mathbb {C}}^2\\\\rightarrow {\\\\mathbb {C}}.\\\\)</span> We show that inner non-degenerate mixed polynomials have weakly isolated singularities and strongly inner non-degenerate mixed polynomials have isolated singularities. Furthermore, under one additional assumption, which we call “<span>\\\\(\\\\Gamma \\\\)</span>-niceness”, the links of these singularities can be completely characterized in terms of the Newton boundary of <i>f</i>. In particular, adding terms above the Newton boundary does not affect the topology of the link.</p>\",\"PeriodicalId\":501417,\"journal\":{\"name\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"volume\":\"12352 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00574-024-00407-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00407-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了(强)内非退化混合函数的概念(f:{\mathbb {C}^2\rightarrow {\mathbb {C}}.\) 我们证明内非退化混合多项式具有弱孤立奇点,而强内非退化混合多项式具有孤立奇点。此外,在一个我们称之为"((Gamma)-niceness "的附加假设下,这些奇点的链接可以完全用 f 的牛顿边界来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Links of Singularities of Inner Non-degenerate Mixed Functions

Links of Singularities of Inner Non-degenerate Mixed Functions

We introduce the notion of a (strongly) inner non-degenerate mixed function \(f:{\mathbb {C}}^2\rightarrow {\mathbb {C}}.\) We show that inner non-degenerate mixed polynomials have weakly isolated singularities and strongly inner non-degenerate mixed polynomials have isolated singularities. Furthermore, under one additional assumption, which we call “\(\Gamma \)-niceness”, the links of these singularities can be completely characterized in terms of the Newton boundary of f. In particular, adding terms above the Newton boundary does not affect the topology of the link.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信