Mircea Gabriel Stoleriu, Michael Pienn, Rudolf A Joerres, Peter Alter, Tamas Fero, Martin Urschler, Gabor Kovacs, Horst Olschewski, Hans-Ulrich Kauczor, Mark Wielpütz, Bertram Jobst, Tobias Welte, Jürgen Behr, Franziska C Trudzinski, Robert Bals, Henrik Watz, Claus F Vogelmeier, Jürgen Biederer, Kathrin Kahnert
{"title":"呼气静脉量和动脉扭曲度与慢性阻塞性肺病患者的疾病严重程度和死亡风险有关:COSYCONET 的研究结果","authors":"Mircea Gabriel Stoleriu, Michael Pienn, Rudolf A Joerres, Peter Alter, Tamas Fero, Martin Urschler, Gabor Kovacs, Horst Olschewski, Hans-Ulrich Kauczor, Mark Wielpütz, Bertram Jobst, Tobias Welte, Jürgen Behr, Franziska C Trudzinski, Robert Bals, Henrik Watz, Claus F Vogelmeier, Jürgen Biederer, Kathrin Kahnert","doi":"10.2147/copd.s458905","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> The aim of this study was to evaluate the association between computed tomography (CT) quantitative pulmonary vessel morphology and lung function, disease severity, and mortality risk in patients with chronic obstructive pulmonary disease (COPD).<br/><strong>Patients and Methods:</strong> Participants of the prospective nationwide COSYCONET cohort study with paired inspiratory-expiratory CT were included. Fully automatic software, developed in-house, segmented arterial and venous pulmonary vessels and quantified volume and tortuosity on inspiratory and expiratory scans. The association between vessel volume normalised to lung volume and tortuosity versus lung function (forced expiratory volume in 1 sec [FEV<sub>1</sub>]), air trapping (residual volume to total lung capacity ratio [RV/TLC]), transfer factor for carbon monoxide (TLCO), disease severity in terms of Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D, and mortality were analysed by linear, logistic or Cox proportional hazard regression.<br/><strong>Results:</strong> Complete data were available from 138 patients (39% female, mean age 65 years). FEV<sub>1</sub>, RV/TLC and TLCO, all as % predicted, were significantly (p < 0.05 each) associated with expiratory vessel characteristics, predominantly venous volume and arterial tortuosity. Associations with inspiratory vessel characteristics were absent or negligible. The patterns were similar for relationships between GOLD D and mortality with vessel characteristics. Expiratory venous volume was an independent predictor of mortality, in addition to FEV<sub>1</sub>.<br/><strong>Conclusion:</strong> By using automated software in patients with COPD, clinically relevant information on pulmonary vasculature can be extracted from expiratory CT scans (although not inspiratory scans); in particular, expiratory pulmonary venous volume predicted mortality.<br/><strong>Trial Registration:</strong> NCT01245933.<br/><br/><strong>Keywords:</strong> COPD, computed tomography, pulmonary vasculature, vessel volume, vessel tortuosity, lung function<br/>","PeriodicalId":13792,"journal":{"name":"International Journal of Chronic Obstructive Pulmonary Disease","volume":"76 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expiratory Venous Volume and Arterial Tortuosity are Associated with Disease Severity and Mortality Risk in Patients with COPD: Results from COSYCONET\",\"authors\":\"Mircea Gabriel Stoleriu, Michael Pienn, Rudolf A Joerres, Peter Alter, Tamas Fero, Martin Urschler, Gabor Kovacs, Horst Olschewski, Hans-Ulrich Kauczor, Mark Wielpütz, Bertram Jobst, Tobias Welte, Jürgen Behr, Franziska C Trudzinski, Robert Bals, Henrik Watz, Claus F Vogelmeier, Jürgen Biederer, Kathrin Kahnert\",\"doi\":\"10.2147/copd.s458905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Purpose:</strong> The aim of this study was to evaluate the association between computed tomography (CT) quantitative pulmonary vessel morphology and lung function, disease severity, and mortality risk in patients with chronic obstructive pulmonary disease (COPD).<br/><strong>Patients and Methods:</strong> Participants of the prospective nationwide COSYCONET cohort study with paired inspiratory-expiratory CT were included. Fully automatic software, developed in-house, segmented arterial and venous pulmonary vessels and quantified volume and tortuosity on inspiratory and expiratory scans. The association between vessel volume normalised to lung volume and tortuosity versus lung function (forced expiratory volume in 1 sec [FEV<sub>1</sub>]), air trapping (residual volume to total lung capacity ratio [RV/TLC]), transfer factor for carbon monoxide (TLCO), disease severity in terms of Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D, and mortality were analysed by linear, logistic or Cox proportional hazard regression.<br/><strong>Results:</strong> Complete data were available from 138 patients (39% female, mean age 65 years). FEV<sub>1</sub>, RV/TLC and TLCO, all as % predicted, were significantly (p < 0.05 each) associated with expiratory vessel characteristics, predominantly venous volume and arterial tortuosity. Associations with inspiratory vessel characteristics were absent or negligible. The patterns were similar for relationships between GOLD D and mortality with vessel characteristics. Expiratory venous volume was an independent predictor of mortality, in addition to FEV<sub>1</sub>.<br/><strong>Conclusion:</strong> By using automated software in patients with COPD, clinically relevant information on pulmonary vasculature can be extracted from expiratory CT scans (although not inspiratory scans); in particular, expiratory pulmonary venous volume predicted mortality.<br/><strong>Trial Registration:</strong> NCT01245933.<br/><br/><strong>Keywords:</strong> COPD, computed tomography, pulmonary vasculature, vessel volume, vessel tortuosity, lung function<br/>\",\"PeriodicalId\":13792,\"journal\":{\"name\":\"International Journal of Chronic Obstructive Pulmonary Disease\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chronic Obstructive Pulmonary Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/copd.s458905\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chronic Obstructive Pulmonary Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/copd.s458905","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Expiratory Venous Volume and Arterial Tortuosity are Associated with Disease Severity and Mortality Risk in Patients with COPD: Results from COSYCONET
Purpose: The aim of this study was to evaluate the association between computed tomography (CT) quantitative pulmonary vessel morphology and lung function, disease severity, and mortality risk in patients with chronic obstructive pulmonary disease (COPD). Patients and Methods: Participants of the prospective nationwide COSYCONET cohort study with paired inspiratory-expiratory CT were included. Fully automatic software, developed in-house, segmented arterial and venous pulmonary vessels and quantified volume and tortuosity on inspiratory and expiratory scans. The association between vessel volume normalised to lung volume and tortuosity versus lung function (forced expiratory volume in 1 sec [FEV1]), air trapping (residual volume to total lung capacity ratio [RV/TLC]), transfer factor for carbon monoxide (TLCO), disease severity in terms of Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D, and mortality were analysed by linear, logistic or Cox proportional hazard regression. Results: Complete data were available from 138 patients (39% female, mean age 65 years). FEV1, RV/TLC and TLCO, all as % predicted, were significantly (p < 0.05 each) associated with expiratory vessel characteristics, predominantly venous volume and arterial tortuosity. Associations with inspiratory vessel characteristics were absent or negligible. The patterns were similar for relationships between GOLD D and mortality with vessel characteristics. Expiratory venous volume was an independent predictor of mortality, in addition to FEV1. Conclusion: By using automated software in patients with COPD, clinically relevant information on pulmonary vasculature can be extracted from expiratory CT scans (although not inspiratory scans); in particular, expiratory pulmonary venous volume predicted mortality. Trial Registration: NCT01245933.
期刊介绍:
An international, peer-reviewed journal of therapeutics and pharmacology focusing on concise rapid reporting of clinical studies and reviews in COPD. Special focus will be given to the pathophysiological processes underlying the disease, intervention programs, patient focused education, and self management protocols. This journal is directed at specialists and healthcare professionals