Karla Joane da Silva Menezes, Fernanda De França Genuíno Ramos Campos, Marianny de Souza, Daniel Calazans Medeiros, Igor José dos Santos Nascimento, Ricardo Olimpio de Moura
{"title":"通过分子动力学模拟和结合自由能计算发现 NLRP3 抑制剂的新见解","authors":"Karla Joane da Silva Menezes, Fernanda De França Genuíno Ramos Campos, Marianny de Souza, Daniel Calazans Medeiros, Igor José dos Santos Nascimento, Ricardo Olimpio de Moura","doi":"10.2174/0115701808303890240620074039","DOIUrl":null,"url":null,"abstract":"Background: Inflammation is an immunological reaction against an aggressor agent. NLRP3 inflammasome is a component of the immune system, which, when excessively activated, results in several inflammatory diseases, making it an attractive target for discovering antiinflammatory drugs. Computer-Aided Drug Design (CADD) techniques are powerful tools used to search for new drugs in less time and financial cost. Recently, studies demonstrated the CADD methods to discover information about NLRP3 inhibitors MCC950 and NP3-146. In addition, the discovery of GDC-2394 and its evaluation in clinical trials instigate new studies to find binding modes and structural attributes that can used in drug design works against this target. Objectives: Here, molecular modeling methods were used to discover the significant interactions of GDC-2394, MCC950, and NP3-146 with NLRP3 to obtain helpful information in drug design compared to other inhibitors. Methods: Molecular docking was performed using GOLD software. The best complexes were submitted into molecular dynamics simulations using GROMACS software, and the MM-PBSA was used to provide the free binding energy, which was performed using the tool g_mmpbsa compiled in GROMACS. Results: The RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. DCCM analysis showed the best correlation in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MMPBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. result: Then, RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. Through DCCM analysis, the best correlation was observed in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MM-PBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. Conclusion: Thus, these discoveries may contribute to the development of new anti-inflammatory drugs, such as NLRP3 inhibitors.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Simulations and Binding Free Energy Calculations to Discover New Insights into NLRP3 Inhibitors\",\"authors\":\"Karla Joane da Silva Menezes, Fernanda De França Genuíno Ramos Campos, Marianny de Souza, Daniel Calazans Medeiros, Igor José dos Santos Nascimento, Ricardo Olimpio de Moura\",\"doi\":\"10.2174/0115701808303890240620074039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Inflammation is an immunological reaction against an aggressor agent. NLRP3 inflammasome is a component of the immune system, which, when excessively activated, results in several inflammatory diseases, making it an attractive target for discovering antiinflammatory drugs. Computer-Aided Drug Design (CADD) techniques are powerful tools used to search for new drugs in less time and financial cost. Recently, studies demonstrated the CADD methods to discover information about NLRP3 inhibitors MCC950 and NP3-146. In addition, the discovery of GDC-2394 and its evaluation in clinical trials instigate new studies to find binding modes and structural attributes that can used in drug design works against this target. Objectives: Here, molecular modeling methods were used to discover the significant interactions of GDC-2394, MCC950, and NP3-146 with NLRP3 to obtain helpful information in drug design compared to other inhibitors. Methods: Molecular docking was performed using GOLD software. The best complexes were submitted into molecular dynamics simulations using GROMACS software, and the MM-PBSA was used to provide the free binding energy, which was performed using the tool g_mmpbsa compiled in GROMACS. Results: The RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. DCCM analysis showed the best correlation in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MMPBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. result: Then, RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. Through DCCM analysis, the best correlation was observed in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MM-PBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. Conclusion: Thus, these discoveries may contribute to the development of new anti-inflammatory drugs, such as NLRP3 inhibitors.\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808303890240620074039\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701808303890240620074039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Molecular Dynamics Simulations and Binding Free Energy Calculations to Discover New Insights into NLRP3 Inhibitors
Background: Inflammation is an immunological reaction against an aggressor agent. NLRP3 inflammasome is a component of the immune system, which, when excessively activated, results in several inflammatory diseases, making it an attractive target for discovering antiinflammatory drugs. Computer-Aided Drug Design (CADD) techniques are powerful tools used to search for new drugs in less time and financial cost. Recently, studies demonstrated the CADD methods to discover information about NLRP3 inhibitors MCC950 and NP3-146. In addition, the discovery of GDC-2394 and its evaluation in clinical trials instigate new studies to find binding modes and structural attributes that can used in drug design works against this target. Objectives: Here, molecular modeling methods were used to discover the significant interactions of GDC-2394, MCC950, and NP3-146 with NLRP3 to obtain helpful information in drug design compared to other inhibitors. Methods: Molecular docking was performed using GOLD software. The best complexes were submitted into molecular dynamics simulations using GROMACS software, and the MM-PBSA was used to provide the free binding energy, which was performed using the tool g_mmpbsa compiled in GROMACS. Results: The RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. DCCM analysis showed the best correlation in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MMPBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. result: Then, RMSD, RMSF, Rg, SASA, and H-bond plots showed that the compound was stable during MD simulation time (100 ns) for GDC-2394. The PCA analysis for all compounds verified similar variance of the complex with the inhibitors to the apo-NLRP3, indicative of stability. Through DCCM analysis, the best correlation was observed in residues 134 - 371 region, which contains critical amino acids from the binding site (Ala227, Ala228, and Arg578), besides the newly identified residues. Using MM-PBSA to provide the binding free energy, it was observed that the high affinity of the drugs against NLRP3 is related to the lower rigidity of the structure. Furthermore, we identified the critical residues Phe575, Pro352, Tyr632, and Met661 related to the coupling process. Conclusion: Thus, these discoveries may contribute to the development of new anti-inflammatory drugs, such as NLRP3 inhibitors.
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.