{"title":"制备用于增韧聚(苯乙烯-共丙烯腈)树脂的聚丙烯酸丁酯接枝聚(苯乙烯-共丙烯腈)颗粒","authors":"Mengen Liu, Qianyi Tang, Baijun Liu, Mingyao Zhang","doi":"10.1002/pen.26848","DOIUrl":null,"url":null,"abstract":"<jats:label/>Herein, the impact modifier of poly(butyl acrylate) grafted poly(styrene‐co‐acrylonitrile) (PBA‐g‐SAN) with 60% rubber content was prepared by emulsion grafting polymerization and subsequently blended with styrene–acrylonitrile copolymer (SAN) resin to construct acrylate styrene acrylonitrile (ASA) resins. The effects of acrylonitrile content of PBA‐g‐SAN copolymer and PBA size on the ASA resins' mechanical properties were investigated. Experimental results revealed that ASA resin's highest impact strength reached 27.75 kJ/m<jats:sup>2</jats:sup>. The lap shear adhesion test suggested that the PBA‐g‐SAN copolymer with 21% AN content exhibited excellent interfacial adhesion with SAN resin. The PBA‐g‐SAN particles with 100 and 400 nm poly (butyl acrylate) as core rubbers demonstrated a synergistic toughening effect for SAN resin. The high blackness ASA resin with excellent impact resistance was obtained when the 100 nm and the 400 nm poly (butyl acrylate) particle mass ratio reached 8/2.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The ASA resin with 27.75KJ/m<jats:sup>2</jats:sup> impact strength was prepared.</jats:list-item> <jats:list-item>The synergistic toughening mechanisms were investigated.</jats:list-item> <jats:list-item>The high blackness ASA resin was constructed.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"18 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of poly(butyl acrylate)‐grafted‐poly(styrene‐co‐acrylonitrile) particles for toughening poly(styrene‐co‐acrylonitrile) resin\",\"authors\":\"Mengen Liu, Qianyi Tang, Baijun Liu, Mingyao Zhang\",\"doi\":\"10.1002/pen.26848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Herein, the impact modifier of poly(butyl acrylate) grafted poly(styrene‐co‐acrylonitrile) (PBA‐g‐SAN) with 60% rubber content was prepared by emulsion grafting polymerization and subsequently blended with styrene–acrylonitrile copolymer (SAN) resin to construct acrylate styrene acrylonitrile (ASA) resins. The effects of acrylonitrile content of PBA‐g‐SAN copolymer and PBA size on the ASA resins' mechanical properties were investigated. Experimental results revealed that ASA resin's highest impact strength reached 27.75 kJ/m<jats:sup>2</jats:sup>. The lap shear adhesion test suggested that the PBA‐g‐SAN copolymer with 21% AN content exhibited excellent interfacial adhesion with SAN resin. The PBA‐g‐SAN particles with 100 and 400 nm poly (butyl acrylate) as core rubbers demonstrated a synergistic toughening effect for SAN resin. The high blackness ASA resin with excellent impact resistance was obtained when the 100 nm and the 400 nm poly (butyl acrylate) particle mass ratio reached 8/2.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>The ASA resin with 27.75KJ/m<jats:sup>2</jats:sup> impact strength was prepared.</jats:list-item> <jats:list-item>The synergistic toughening mechanisms were investigated.</jats:list-item> <jats:list-item>The high blackness ASA resin was constructed.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26848\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26848","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of poly(butyl acrylate)‐grafted‐poly(styrene‐co‐acrylonitrile) particles for toughening poly(styrene‐co‐acrylonitrile) resin
Herein, the impact modifier of poly(butyl acrylate) grafted poly(styrene‐co‐acrylonitrile) (PBA‐g‐SAN) with 60% rubber content was prepared by emulsion grafting polymerization and subsequently blended with styrene–acrylonitrile copolymer (SAN) resin to construct acrylate styrene acrylonitrile (ASA) resins. The effects of acrylonitrile content of PBA‐g‐SAN copolymer and PBA size on the ASA resins' mechanical properties were investigated. Experimental results revealed that ASA resin's highest impact strength reached 27.75 kJ/m2. The lap shear adhesion test suggested that the PBA‐g‐SAN copolymer with 21% AN content exhibited excellent interfacial adhesion with SAN resin. The PBA‐g‐SAN particles with 100 and 400 nm poly (butyl acrylate) as core rubbers demonstrated a synergistic toughening effect for SAN resin. The high blackness ASA resin with excellent impact resistance was obtained when the 100 nm and the 400 nm poly (butyl acrylate) particle mass ratio reached 8/2.HighlightsThe ASA resin with 27.75KJ/m2 impact strength was prepared.The synergistic toughening mechanisms were investigated.The high blackness ASA resin was constructed.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.