开放书籍的同调理论特性

IF 0.6 4区 数学 Q3 MATHEMATICS
Ruizhi Huang, Stephen Theriault
{"title":"开放书籍的同调理论特性","authors":"Ruizhi Huang, Stephen Theriault","doi":"10.1093/qmath/haae035","DOIUrl":null,"url":null,"abstract":"We study the homotopy groups of open books in terms of those of their pages and bindings. Under homotopy theoretic conditions on the monodromy we prove an integral decomposition result for the based loop space on an open book, and under more relaxed conditions we prove a rational loop space decomposition. The latter case allows for a rational dichotomy theorem for open books, as an extension of the classical dichotomy in rational homotopy theory. As a direct application, we show that for Milnor’s open book decomposition of an odd sphere with monodromy of finite order the induced action of the monodromy on the homology groups of its page cannot be nilpotent.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy Theoretic Properties Of Open Books\",\"authors\":\"Ruizhi Huang, Stephen Theriault\",\"doi\":\"10.1093/qmath/haae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homotopy groups of open books in terms of those of their pages and bindings. Under homotopy theoretic conditions on the monodromy we prove an integral decomposition result for the based loop space on an open book, and under more relaxed conditions we prove a rational loop space decomposition. The latter case allows for a rational dichotomy theorem for open books, as an extension of the classical dichotomy in rational homotopy theory. As a direct application, we show that for Milnor’s open book decomposition of an odd sphere with monodromy of finite order the induced action of the monodromy on the homology groups of its page cannot be nilpotent.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们从开本的书页和装订的同调群角度研究开本的同调群。在单色性的同调理论条件下,我们证明了开本上基于环空间的积分分解结果;在更宽松的条件下,我们证明了合理环空间分解。在更宽松的条件下,我们证明了有理环空间分解。后一种情况允许对开卷进行有理二分定理,作为有理同调理论中经典二分定理的扩展。作为直接应用,我们证明了对于具有有限阶单色性的奇球体的米尔诺开卷分解,单色性对其页面同调群的诱导作用不可能是零势的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy Theoretic Properties Of Open Books
We study the homotopy groups of open books in terms of those of their pages and bindings. Under homotopy theoretic conditions on the monodromy we prove an integral decomposition result for the based loop space on an open book, and under more relaxed conditions we prove a rational loop space decomposition. The latter case allows for a rational dichotomy theorem for open books, as an extension of the classical dichotomy in rational homotopy theory. As a direct application, we show that for Milnor’s open book decomposition of an odd sphere with monodromy of finite order the induced action of the monodromy on the homology groups of its page cannot be nilpotent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信