整$$\mathbb {R}^2$$ 中几类规定平均曲率方程的异次元解

Claudianor O. Alves, Renan J. S. Isneri
{"title":"整$$\\mathbb {R}^2$$ 中几类规定平均曲率方程的异次元解","authors":"Claudianor O. Alves, Renan J. S. Isneri","doi":"10.1007/s00030-024-00965-0","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type </p><span>$$\\begin{aligned} -div\\left( \\frac{\\nabla u}{\\sqrt{1+|\\nabla u|^2}}\\right) + A(\\epsilon x,y)V'(u)=0~~\\text { in }~~\\mathbb {R}^2, \\end{aligned}$$</span><p>where <span>\\(\\epsilon &gt;0\\)</span> and <i>V</i> is a double-well potential with minima at <span>\\(t=\\alpha \\)</span> and <span>\\(t=\\beta \\)</span> with <span>\\(\\alpha &lt;\\beta \\)</span>. Here, we consider some class of functions <i>A</i>(<i>x</i>, <i>y</i>) that are oscillatory in the variable <i>y</i> and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroclinic solutions for some classes of prescribed mean curvature equations in whole $$\\\\mathbb {R}^2$$\",\"authors\":\"Claudianor O. Alves, Renan J. S. Isneri\",\"doi\":\"10.1007/s00030-024-00965-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type </p><span>$$\\\\begin{aligned} -div\\\\left( \\\\frac{\\\\nabla u}{\\\\sqrt{1+|\\\\nabla u|^2}}\\\\right) + A(\\\\epsilon x,y)V'(u)=0~~\\\\text { in }~~\\\\mathbb {R}^2, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\epsilon &gt;0\\\\)</span> and <i>V</i> is a double-well potential with minima at <span>\\\\(t=\\\\alpha \\\\)</span> and <span>\\\\(t=\\\\beta \\\\)</span> with <span>\\\\(\\\\alpha &lt;\\\\beta \\\\)</span>. Here, we consider some class of functions <i>A</i>(<i>x</i>, <i>y</i>) that are oscillatory in the variable <i>y</i> and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00965-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00965-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的在于使用变分法为一些类型为 $$\begin{aligned} -div\left( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}/right)+A(\epsilon x、y)V'(u)=0~~text { in }~~\mathbb {R}^2, \end{aligned}$$ 其中 \(\epsilon >;0),V是一个双阱势,在(t=α)和(t=beta)处有最小值,在(α<beta)处有最小值。在这里,我们考虑了某类函数 A(x,y),它们在变量 y 中是振荡的,并且满足不同的几何条件,如所有变量的周期性或在无穷远处的渐近周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heteroclinic solutions for some classes of prescribed mean curvature equations in whole $$\mathbb {R}^2$$

Heteroclinic solutions for some classes of prescribed mean curvature equations in whole $$\mathbb {R}^2$$

The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type

$$\begin{aligned} -div\left( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) + A(\epsilon x,y)V'(u)=0~~\text { in }~~\mathbb {R}^2, \end{aligned}$$

where \(\epsilon >0\) and V is a double-well potential with minima at \(t=\alpha \) and \(t=\beta \) with \(\alpha <\beta \). Here, we consider some class of functions A(xy) that are oscillatory in the variable y and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信