{"title":"整$$\\mathbb {R}^2$$ 中几类规定平均曲率方程的异次元解","authors":"Claudianor O. Alves, Renan J. S. Isneri","doi":"10.1007/s00030-024-00965-0","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type </p><span>$$\\begin{aligned} -div\\left( \\frac{\\nabla u}{\\sqrt{1+|\\nabla u|^2}}\\right) + A(\\epsilon x,y)V'(u)=0~~\\text { in }~~\\mathbb {R}^2, \\end{aligned}$$</span><p>where <span>\\(\\epsilon >0\\)</span> and <i>V</i> is a double-well potential with minima at <span>\\(t=\\alpha \\)</span> and <span>\\(t=\\beta \\)</span> with <span>\\(\\alpha <\\beta \\)</span>. Here, we consider some class of functions <i>A</i>(<i>x</i>, <i>y</i>) that are oscillatory in the variable <i>y</i> and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroclinic solutions for some classes of prescribed mean curvature equations in whole $$\\\\mathbb {R}^2$$\",\"authors\":\"Claudianor O. Alves, Renan J. S. Isneri\",\"doi\":\"10.1007/s00030-024-00965-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type </p><span>$$\\\\begin{aligned} -div\\\\left( \\\\frac{\\\\nabla u}{\\\\sqrt{1+|\\\\nabla u|^2}}\\\\right) + A(\\\\epsilon x,y)V'(u)=0~~\\\\text { in }~~\\\\mathbb {R}^2, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\epsilon >0\\\\)</span> and <i>V</i> is a double-well potential with minima at <span>\\\\(t=\\\\alpha \\\\)</span> and <span>\\\\(t=\\\\beta \\\\)</span> with <span>\\\\(\\\\alpha <\\\\beta \\\\)</span>. Here, we consider some class of functions <i>A</i>(<i>x</i>, <i>y</i>) that are oscillatory in the variable <i>y</i> and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00965-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00965-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的在于使用变分法为一些类型为 $$\begin{aligned} -div\left( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}/right)+A(\epsilon x、y)V'(u)=0~~text { in }~~\mathbb {R}^2, \end{aligned}$$ 其中 \(\epsilon >;0),V是一个双阱势,在(t=α)和(t=beta)处有最小值,在(α<beta)处有最小值。在这里,我们考虑了某类函数 A(x,y),它们在变量 y 中是振荡的,并且满足不同的几何条件,如所有变量的周期性或在无穷远处的渐近周期性。
Heteroclinic solutions for some classes of prescribed mean curvature equations in whole $$\mathbb {R}^2$$
The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type
where \(\epsilon >0\) and V is a double-well potential with minima at \(t=\alpha \) and \(t=\beta \) with \(\alpha <\beta \). Here, we consider some class of functions A(x, y) that are oscillatory in the variable y and satisfy different geometric conditions such as periodicity in all variables or asymptotically periodic at infinity.