关于巴拿赫空间中涉及 2p 面积函数的一类函数的莫尔斯同源性的说明

Luca Asselle, Maciej Starostka
{"title":"关于巴拿赫空间中涉及 2p 面积函数的一类函数的莫尔斯同源性的说明","authors":"Luca Asselle, Maciej Starostka","doi":"10.1007/s00030-024-00962-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we show how to construct Morse homology for an explicit class of functionals involving the 2<i>p</i>-area functional. The natural domain of definition of such functionals is the Banach space <span>\\(W^{1,2p}_0(\\Omega )\\)</span>, where <span>\\(p&gt;n/2\\)</span> and <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> is a bounded domain with sufficiently smooth boundary. As <span>\\(W^{1,2p}_0(\\Omega )\\)</span> is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate in the usual sense, and hence in the construction of Morse homology we only require that the second differential at each critical point be injective. Our result upgrades, in the case <span>\\(p&gt;n/2\\)</span>, the results in Cingolani and Vannella (Ann Inst H Poincaré Anal Non Linéaire 2:271–292, 2003; Ann Mat Pura Appl 186:155–183, 2007), where critical groups for an analogous class of functionals are computed, and provides in this special case a positive answer to Smale’s suggestion that injectivity of the second differential should be enough for Morse theory</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional\",\"authors\":\"Luca Asselle, Maciej Starostka\",\"doi\":\"10.1007/s00030-024-00962-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we show how to construct Morse homology for an explicit class of functionals involving the 2<i>p</i>-area functional. The natural domain of definition of such functionals is the Banach space <span>\\\\(W^{1,2p}_0(\\\\Omega )\\\\)</span>, where <span>\\\\(p&gt;n/2\\\\)</span> and <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span> is a bounded domain with sufficiently smooth boundary. As <span>\\\\(W^{1,2p}_0(\\\\Omega )\\\\)</span> is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate in the usual sense, and hence in the construction of Morse homology we only require that the second differential at each critical point be injective. Our result upgrades, in the case <span>\\\\(p&gt;n/2\\\\)</span>, the results in Cingolani and Vannella (Ann Inst H Poincaré Anal Non Linéaire 2:271–292, 2003; Ann Mat Pura Appl 186:155–183, 2007), where critical groups for an analogous class of functionals are computed, and provides in this special case a positive answer to Smale’s suggestion that injectivity of the second differential should be enough for Morse theory</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00962-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00962-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了如何为一类明确的涉及 2p 面积函数的函数构建莫尔斯同调。这类函数的自然定义域是巴拿赫空间(W^{1,2p}_0(\Omega )\),其中\(p>n/2\)和\(\Omega \子集\mathbb {R}^n\) 是一个具有足够光滑边界的有界域。由于 \(W^{1,2p}_0(\Omega )\) 与它的对偶空间不是同构的,所以这种函数的临界点不可能是通常意义上的非退化的,因此在莫尔斯同源性的构造中,我们只要求每个临界点上的二次微分是注入的。在 \(p>n/2\) 的情况下,我们的结果升级了 Cingolani 和 Vannella(Ann Inst H Poincaré Anal Non Linéaire 2:271-292, 2003; Ann Mat Pura Appl 186:155-183, 2007)的结果,其中计算了一类类似函数的临界群,并在这种特殊情况下对 Smale 提出的第二微分的注入性应该足以满足莫尔斯理论的要求做出了正面回答
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional

In this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space \(W^{1,2p}_0(\Omega )\), where \(p>n/2\) and \(\Omega \subset \mathbb {R}^n\) is a bounded domain with sufficiently smooth boundary. As \(W^{1,2p}_0(\Omega )\) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate in the usual sense, and hence in the construction of Morse homology we only require that the second differential at each critical point be injective. Our result upgrades, in the case \(p>n/2\), the results in Cingolani and Vannella (Ann Inst H Poincaré Anal Non Linéaire 2:271–292, 2003; Ann Mat Pura Appl 186:155–183, 2007), where critical groups for an analogous class of functionals are computed, and provides in this special case a positive answer to Smale’s suggestion that injectivity of the second differential should be enough for Morse theory

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信