{"title":"马蒂内分布上的亚洛伦兹几何学","authors":"Yu. L. Sachkov","doi":"10.1134/S1064562424702053","DOIUrl":null,"url":null,"abstract":"<p>Two problems of sub-Lorentzian geometry on the Martinet distribution are studied. For the first one, the reachable set has a nontrivial intersection with the Martinet plane, while a trivial intersection occurs for the second problem. Reachable sets, optimal trajectories, and sub-Lorentzian distances and spheres are described.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Lorentzian Geometry on the Martinet Distribution\",\"authors\":\"Yu. L. Sachkov\",\"doi\":\"10.1134/S1064562424702053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two problems of sub-Lorentzian geometry on the Martinet distribution are studied. For the first one, the reachable set has a nontrivial intersection with the Martinet plane, while a trivial intersection occurs for the second problem. Reachable sets, optimal trajectories, and sub-Lorentzian distances and spheres are described.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-Lorentzian Geometry on the Martinet Distribution
Two problems of sub-Lorentzian geometry on the Martinet distribution are studied. For the first one, the reachable set has a nontrivial intersection with the Martinet plane, while a trivial intersection occurs for the second problem. Reachable sets, optimal trajectories, and sub-Lorentzian distances and spheres are described.