利用单细胞全息数据的数据挖掘方法评估纯组织环境对基因表达水平的影响

Daigo Okada, Jianshen Zhu, Kan Shota, Yuuki Nishimura, Kazuya Haraguchi
{"title":"利用单细胞全息数据的数据挖掘方法评估纯组织环境对基因表达水平的影响","authors":"Daigo Okada, Jianshen Zhu, Kan Shota, Yuuki Nishimura, Kazuya Haraguchi","doi":"arxiv-2406.06969","DOIUrl":null,"url":null,"abstract":"While single-cell RNA-seq enables the investigation of the celltype effect on\nthe transcriptome, the pure tissue environmental effect has not been well\ninvestigated. The bias in the combination of tissue and celltype in the body\nmade it difficult to evaluate the effect of pure tissue environment by omics\ndata mining. It is important to prevent statistical confounding among discrete\nvariables such as celltype, tissue, and other categorical variables when\nevaluating the effects of these variables. We propose a novel method to\nenumerate suitable analysis units of variables for estimating the effects of\ntissue environment by extending the maximal biclique enumeration problem for\nbipartite graphs to $k$-partite hypergraphs. We applied the proposed method to\na large mouse single-cell transcriptome dataset of Tabala Muris Senis to\nevaluate pure tissue environmental effects on gene expression. Data Mining\nusing the proposed method revealed pure tissue environment effects on gene\nexpression and its age-related change among adipose sub-tissues. The method\nproposed in this study helps evaluations of the effects of discrete variables\nin exploratory data mining of large-scale genomics datasets.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data mining method of single-cell omics data to evaluate a pure tissue environmental effect on gene expression level\",\"authors\":\"Daigo Okada, Jianshen Zhu, Kan Shota, Yuuki Nishimura, Kazuya Haraguchi\",\"doi\":\"arxiv-2406.06969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While single-cell RNA-seq enables the investigation of the celltype effect on\\nthe transcriptome, the pure tissue environmental effect has not been well\\ninvestigated. The bias in the combination of tissue and celltype in the body\\nmade it difficult to evaluate the effect of pure tissue environment by omics\\ndata mining. It is important to prevent statistical confounding among discrete\\nvariables such as celltype, tissue, and other categorical variables when\\nevaluating the effects of these variables. We propose a novel method to\\nenumerate suitable analysis units of variables for estimating the effects of\\ntissue environment by extending the maximal biclique enumeration problem for\\nbipartite graphs to $k$-partite hypergraphs. We applied the proposed method to\\na large mouse single-cell transcriptome dataset of Tabala Muris Senis to\\nevaluate pure tissue environmental effects on gene expression. Data Mining\\nusing the proposed method revealed pure tissue environment effects on gene\\nexpression and its age-related change among adipose sub-tissues. The method\\nproposed in this study helps evaluations of the effects of discrete variables\\nin exploratory data mining of large-scale genomics datasets.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然单细胞RNA-seq可以研究细胞类型对转录组的影响,但是纯组织环境的影响还没有得到很好的研究。由于体内组织和细胞类型的组合存在偏差,因此很难通过omics数据挖掘来评估纯组织环境的影响。在评估细胞类型、组织和其他分类变量等离散变量的影响时,必须防止这些变量之间的统计混淆。我们提出了一种新方法,通过将局部图的最大双斜枚举问题扩展到 $k$ 局部超图,来枚举合适的变量分析单元,以估计组织环境的影响。我们将提出的方法应用于 Tabala Muris Senis 的大型小鼠单细胞转录组数据集,以评估纯组织环境对基因表达的影响。利用该方法进行的数据挖掘揭示了纯组织环境对基因表达的影响及其在脂肪亚组织中与年龄相关的变化。本研究提出的方法有助于在大规模基因组学数据集的探索性数据挖掘中评估离散变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining method of single-cell omics data to evaluate a pure tissue environmental effect on gene expression level
While single-cell RNA-seq enables the investigation of the celltype effect on the transcriptome, the pure tissue environmental effect has not been well investigated. The bias in the combination of tissue and celltype in the body made it difficult to evaluate the effect of pure tissue environment by omics data mining. It is important to prevent statistical confounding among discrete variables such as celltype, tissue, and other categorical variables when evaluating the effects of these variables. We propose a novel method to enumerate suitable analysis units of variables for estimating the effects of tissue environment by extending the maximal biclique enumeration problem for bipartite graphs to $k$-partite hypergraphs. We applied the proposed method to a large mouse single-cell transcriptome dataset of Tabala Muris Senis to evaluate pure tissue environmental effects on gene expression. Data Mining using the proposed method revealed pure tissue environment effects on gene expression and its age-related change among adipose sub-tissues. The method proposed in this study helps evaluations of the effects of discrete variables in exploratory data mining of large-scale genomics datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信