一种新型 TiO2 纳米棒/MoTe2 量子点/Al2O3 复合光催化剂,可在模拟阳光下高效光电化学分水

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang
{"title":"一种新型 TiO2 纳米棒/MoTe2 量子点/Al2O3 复合光催化剂,可在模拟阳光下高效光电化学分水","authors":"Jie Meng,&nbsp;Hongmei Liu,&nbsp;Sainan Zhang,&nbsp;Baogui Ye,&nbsp;Min Feng,&nbsp;Daoai Wang","doi":"10.1007/s11706-024-0686-8","DOIUrl":null,"url":null,"abstract":"<div><p>The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe<sub>2</sub> QDs)-modified titanium dioxide nanorods (TiO<sub>2</sub> NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al<sub>2</sub>O<sub>3</sub> layer using the atomic layer deposition (ALD) technique. MoTe<sub>2</sub> QDs were initially prepared, and then they were loaded onto TiO<sub>2</sub> NRs using a warm water bath-based heating method. After a layer of Al<sub>2</sub>O<sub>3</sub> was deposited onto resulted TiO<sub>2</sub> NRs/MoTe<sub>2</sub> QDs, the composite TiO<sub>2</sub> NRs/MoTe<sub>2</sub> QDs/Al<sub>2</sub>O<sub>3</sub> was finally obtained. Under simulated sunlight (100 mW·cm<sup>−2</sup>), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm<sup>−2</sup> at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO<sub>2</sub> NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight\",\"authors\":\"Jie Meng,&nbsp;Hongmei Liu,&nbsp;Sainan Zhang,&nbsp;Baogui Ye,&nbsp;Min Feng,&nbsp;Daoai Wang\",\"doi\":\"10.1007/s11706-024-0686-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe<sub>2</sub> QDs)-modified titanium dioxide nanorods (TiO<sub>2</sub> NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al<sub>2</sub>O<sub>3</sub> layer using the atomic layer deposition (ALD) technique. MoTe<sub>2</sub> QDs were initially prepared, and then they were loaded onto TiO<sub>2</sub> NRs using a warm water bath-based heating method. After a layer of Al<sub>2</sub>O<sub>3</sub> was deposited onto resulted TiO<sub>2</sub> NRs/MoTe<sub>2</sub> QDs, the composite TiO<sub>2</sub> NRs/MoTe<sub>2</sub> QDs/Al<sub>2</sub>O<sub>3</sub> was finally obtained. Under simulated sunlight (100 mW·cm<sup>−2</sup>), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm<sup>−2</sup> at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO<sub>2</sub> NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0686-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0686-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用光电化学(PEC)方法将太阳能转化为氢气是生产清洁能源的一种实用方法。然而,它依赖于光催化剂材料的可用性。本研究利用原子层沉积(ALD)技术制备了一种新型光催化剂,该催化剂由碲化钼量子点(MoTe2 QDs)修饰的二氧化钛纳米棒(TiO2 NRs)组成,与 Al2O3 层结合后可提高 PEC 水分离性能。首先制备 MoTe2 QDs,然后用温水浴加热法将其负载到 TiO2 NRs 上。在 TiO2 NRs/MoTe2 QDs 上沉积一层 Al2O3 后,最终得到复合 TiO2 NRs/MoTe2 QDs/Al2O3 。在模拟太阳光(100 mW-cm-2)下,这种复合材料在 1.23 V 时的最大光电流密度为 2.25 mA-cm-2(相对于 RHE),在 380 nm 处的入射光子-电子转换效率为 69.88%,分别是纯 TiO2 NRs 的 4.33 倍和 6.66 倍。因此,本文制备的复合光催化剂在 PEC 水分离、太阳能电池和其他光催化器件领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight

The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信