学习内核参数查找表以实现自适应双边滤波

Runtao Xi, Jiahao Lyu, Kang Sun, Tian Ma
{"title":"学习内核参数查找表以实现自适应双边滤波","authors":"Runtao Xi, Jiahao Lyu, Kang Sun, Tian Ma","doi":"10.1007/s00371-024-03553-6","DOIUrl":null,"url":null,"abstract":"<p>Bilateral filtering is a widely used image smoothing filter that preserves image edges while also smoothing texture. In previous research, the focus of improving the bilateral filter has primarily been on constructing an adaptive range kernel. However, recent research has shown that even slight noise perturbations can prevent the bilateral filter from effectively preserving image edges. To address this issue, we employ a neural network to learn the kernel parameters that can effectively counteract noise perturbations. Additionally, to enhance the adaptability of the learned kernel parameters to the local edge features of the image, we utilize the edge-sensitive indexing method to construct kernel parameter lookup tables (LUTs). During testing, we determine the appropriate spatial kernel and range kernel parameters for each pixel using a lookup table and interpolation. This allows us to effectively smooth the image in the presence of noise perturbation. In this paper, we conducted comparative experiments on several datasets to verify that the proposed method outperforms existing bilateral filtering methods in preserving image structure, removing image texture, and resisting slight noise perturbations. The code is available at https://github.com/FightingSrain/AdaBFLUT.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning kernel parameter lookup tables to implement adaptive bilateral filtering\",\"authors\":\"Runtao Xi, Jiahao Lyu, Kang Sun, Tian Ma\",\"doi\":\"10.1007/s00371-024-03553-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bilateral filtering is a widely used image smoothing filter that preserves image edges while also smoothing texture. In previous research, the focus of improving the bilateral filter has primarily been on constructing an adaptive range kernel. However, recent research has shown that even slight noise perturbations can prevent the bilateral filter from effectively preserving image edges. To address this issue, we employ a neural network to learn the kernel parameters that can effectively counteract noise perturbations. Additionally, to enhance the adaptability of the learned kernel parameters to the local edge features of the image, we utilize the edge-sensitive indexing method to construct kernel parameter lookup tables (LUTs). During testing, we determine the appropriate spatial kernel and range kernel parameters for each pixel using a lookup table and interpolation. This allows us to effectively smooth the image in the presence of noise perturbation. In this paper, we conducted comparative experiments on several datasets to verify that the proposed method outperforms existing bilateral filtering methods in preserving image structure, removing image texture, and resisting slight noise perturbations. The code is available at https://github.com/FightingSrain/AdaBFLUT.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03553-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03553-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双边滤波是一种广泛使用的图像平滑滤波器,它在保留图像边缘的同时还能平滑纹理。在以往的研究中,改进双边滤波器的重点主要是构建自适应范围内核。然而,最近的研究表明,即使是轻微的噪声扰动也会使双边滤波器无法有效保留图像边缘。为了解决这个问题,我们采用神经网络来学习能有效抵消噪声扰动的内核参数。此外,为了提高学习到的内核参数对图像局部边缘特征的适应性,我们利用边缘敏感索引方法来构建内核参数查找表(LUT)。在测试过程中,我们使用查找表和插值法为每个像素确定合适的空间内核和范围内核参数。这样,我们就能在噪声扰动的情况下有效地平滑图像。在本文中,我们在多个数据集上进行了对比实验,验证了所提出的方法在保留图像结构、去除图像纹理和抵抗轻微噪声扰动方面优于现有的双边滤波方法。代码见 https://github.com/FightingSrain/AdaBFLUT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning kernel parameter lookup tables to implement adaptive bilateral filtering

Learning kernel parameter lookup tables to implement adaptive bilateral filtering

Bilateral filtering is a widely used image smoothing filter that preserves image edges while also smoothing texture. In previous research, the focus of improving the bilateral filter has primarily been on constructing an adaptive range kernel. However, recent research has shown that even slight noise perturbations can prevent the bilateral filter from effectively preserving image edges. To address this issue, we employ a neural network to learn the kernel parameters that can effectively counteract noise perturbations. Additionally, to enhance the adaptability of the learned kernel parameters to the local edge features of the image, we utilize the edge-sensitive indexing method to construct kernel parameter lookup tables (LUTs). During testing, we determine the appropriate spatial kernel and range kernel parameters for each pixel using a lookup table and interpolation. This allows us to effectively smooth the image in the presence of noise perturbation. In this paper, we conducted comparative experiments on several datasets to verify that the proposed method outperforms existing bilateral filtering methods in preserving image structure, removing image texture, and resisting slight noise perturbations. The code is available at https://github.com/FightingSrain/AdaBFLUT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信