$$\mathbb {Z}$$ 上分数离散拉普拉斯函数的 Littlewood-Paley-Stein 平方函数

Huaiqian Li, Liying Mu
{"title":"$$\\mathbb {Z}$$ 上分数离散拉普拉斯函数的 Littlewood-Paley-Stein 平方函数","authors":"Huaiqian Li, Liying Mu","doi":"10.1007/s13163-024-00495-4","DOIUrl":null,"url":null,"abstract":"<p>We investigate the boundedness of “vertical” Littlewood–Paley–Stein square functions for the nonlocal fractional discrete Laplacian on the lattice <span>\\(\\mathbb {Z}\\)</span>, where the underlying graphs are not locally finite. When <span>\\(q\\in [2,\\infty )\\)</span>, we prove the <span>\\(l^q\\)</span> boundedness of the square function by exploring the corresponding Markov jump process and applying the martingale inequality. When <span>\\(q\\in (1,2]\\)</span>, we consider a modified version of the square function and prove its <span>\\(l^q\\)</span> boundedness through a careful in on the generalized carré du champ operator. A counterexample is constructed to show that it is necessary to consider the modified version. Moreover, we extend the study to a class of nonlocal Schrödinger operators for <span>\\(q\\in (1,2]\\)</span>.</p>","PeriodicalId":501429,"journal":{"name":"Revista Matemática Complutense","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Littlewood–Paley–Stein square functions for the fractional discrete Laplacian on $$\\\\mathbb {Z}$$\",\"authors\":\"Huaiqian Li, Liying Mu\",\"doi\":\"10.1007/s13163-024-00495-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the boundedness of “vertical” Littlewood–Paley–Stein square functions for the nonlocal fractional discrete Laplacian on the lattice <span>\\\\(\\\\mathbb {Z}\\\\)</span>, where the underlying graphs are not locally finite. When <span>\\\\(q\\\\in [2,\\\\infty )\\\\)</span>, we prove the <span>\\\\(l^q\\\\)</span> boundedness of the square function by exploring the corresponding Markov jump process and applying the martingale inequality. When <span>\\\\(q\\\\in (1,2]\\\\)</span>, we consider a modified version of the square function and prove its <span>\\\\(l^q\\\\)</span> boundedness through a careful in on the generalized carré du champ operator. A counterexample is constructed to show that it is necessary to consider the modified version. Moreover, we extend the study to a class of nonlocal Schrödinger operators for <span>\\\\(q\\\\in (1,2]\\\\)</span>.</p>\",\"PeriodicalId\":501429,\"journal\":{\"name\":\"Revista Matemática Complutense\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Complutense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-024-00495-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-024-00495-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了网格 \(\mathbb {Z}\) 上非局部分数离散拉普拉奇的 "垂直 "Littlewood-Paley-Stein 方函数的有界性,其中底层图不是局部有限的。当 \(q\in [2,\infty )\) 时,我们通过探索相应的马尔可夫跳跃过程并应用马丁格尔不等式证明了平方函数的 \(l^q\) 有界性。当 \(q\in (1,2]\)时,我们考虑一个修正版的平方函数,并通过对广义卡雷杜尚算子的仔细研究来证明它的\(l^q\)有界性。我们还构建了一个反例来说明有必要考虑修正版。此外,我们还将研究扩展到了\(q\in (1,2]\)的一类非局部薛定谔算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Littlewood–Paley–Stein square functions for the fractional discrete Laplacian on $$\mathbb {Z}$$

We investigate the boundedness of “vertical” Littlewood–Paley–Stein square functions for the nonlocal fractional discrete Laplacian on the lattice \(\mathbb {Z}\), where the underlying graphs are not locally finite. When \(q\in [2,\infty )\), we prove the \(l^q\) boundedness of the square function by exploring the corresponding Markov jump process and applying the martingale inequality. When \(q\in (1,2]\), we consider a modified version of the square function and prove its \(l^q\) boundedness through a careful in on the generalized carré du champ operator. A counterexample is constructed to show that it is necessary to consider the modified version. Moreover, we extend the study to a class of nonlocal Schrödinger operators for \(q\in (1,2]\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信