$${{mathbb P}^2$$ 中标准 $$\Bbbk $$ 配置的沃尔德施密特常数

Maria Virginia Catalisano, Giuseppe Favacchio, Elena Guardo, Yong-Su Shin
{"title":"$${{mathbb P}^2$$ 中标准 $$\\Bbbk $$ 配置的沃尔德施密特常数","authors":"Maria Virginia Catalisano, Giuseppe Favacchio, Elena Guardo, Yong-Su Shin","doi":"10.1007/s13163-024-00493-6","DOIUrl":null,"url":null,"abstract":"<p>A <span>\\(\\Bbbk \\)</span>-configuration of type <span>\\((d_1,\\ldots ,d_s)\\)</span>, where <span>\\(1\\leqslant d_1&lt; \\cdots &lt; d_s \\)</span> are integers, is a set of points in <span>\\({\\mathbb P}^2\\)</span> that has a number of algebraic and geometric properties. For example, the graded Betti numbers and Hilbert functions of all <span>\\(\\Bbbk \\)</span>-configurations in <span>\\({\\mathbb P}^2\\)</span> are determined by the type <span>\\((d_1,\\ldots ,d_s)\\)</span>. However the Waldschmidt constant of a <span>\\(\\Bbbk \\)</span>-configuration in <span>\\({\\mathbb P}^2\\)</span> of the same type may vary. In this paper, we find that the Waldschmidt constant of a <span>\\(\\Bbbk \\)</span>-configuration in <span>\\({\\mathbb P}^2\\)</span> of type <span>\\((d_1,\\ldots ,d_s)\\)</span> with <span>\\(d_1\\ge s\\ge 1\\)</span> is <i>s</i>. Then we deal with the Waldschmidt constants of standard <span>\\(\\Bbbk \\)</span>-configurations in <span>\\({\\mathbb P}^2\\)</span> of type (<i>a</i>), (<i>a</i>, <i>b</i>), and (<i>a</i>, <i>b</i>, <i>c</i>) with <span>\\(a\\ge 1\\)</span>. In particular, we prove that the Waldschmidt constant of a standard <span>\\(\\Bbbk \\)</span>-configuration in <span>\\({\\mathbb P}^2\\)</span> of type (1, <i>b</i>, <i>c</i>) with <span>\\(c\\ge 2b+2\\)</span> does not depend on <i>c</i>.</p>","PeriodicalId":501429,"journal":{"name":"Revista Matemática Complutense","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Waldschmidt constant of a standard $$\\\\Bbbk $$ -configuration in $${\\\\mathbb P}^2$$\",\"authors\":\"Maria Virginia Catalisano, Giuseppe Favacchio, Elena Guardo, Yong-Su Shin\",\"doi\":\"10.1007/s13163-024-00493-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span>\\\\(\\\\Bbbk \\\\)</span>-configuration of type <span>\\\\((d_1,\\\\ldots ,d_s)\\\\)</span>, where <span>\\\\(1\\\\leqslant d_1&lt; \\\\cdots &lt; d_s \\\\)</span> are integers, is a set of points in <span>\\\\({\\\\mathbb P}^2\\\\)</span> that has a number of algebraic and geometric properties. For example, the graded Betti numbers and Hilbert functions of all <span>\\\\(\\\\Bbbk \\\\)</span>-configurations in <span>\\\\({\\\\mathbb P}^2\\\\)</span> are determined by the type <span>\\\\((d_1,\\\\ldots ,d_s)\\\\)</span>. However the Waldschmidt constant of a <span>\\\\(\\\\Bbbk \\\\)</span>-configuration in <span>\\\\({\\\\mathbb P}^2\\\\)</span> of the same type may vary. In this paper, we find that the Waldschmidt constant of a <span>\\\\(\\\\Bbbk \\\\)</span>-configuration in <span>\\\\({\\\\mathbb P}^2\\\\)</span> of type <span>\\\\((d_1,\\\\ldots ,d_s)\\\\)</span> with <span>\\\\(d_1\\\\ge s\\\\ge 1\\\\)</span> is <i>s</i>. Then we deal with the Waldschmidt constants of standard <span>\\\\(\\\\Bbbk \\\\)</span>-configurations in <span>\\\\({\\\\mathbb P}^2\\\\)</span> of type (<i>a</i>), (<i>a</i>, <i>b</i>), and (<i>a</i>, <i>b</i>, <i>c</i>) with <span>\\\\(a\\\\ge 1\\\\)</span>. In particular, we prove that the Waldschmidt constant of a standard <span>\\\\(\\\\Bbbk \\\\)</span>-configuration in <span>\\\\({\\\\mathbb P}^2\\\\)</span> of type (1, <i>b</i>, <i>c</i>) with <span>\\\\(c\\\\ge 2b+2\\\\)</span> does not depend on <i>c</i>.</p>\",\"PeriodicalId\":501429,\"journal\":{\"name\":\"Revista Matemática Complutense\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Complutense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-024-00493-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-024-00493-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个 \((d_1,\ldots ,d_s)\)类型的 \(\Bbbk \)-配置,其中 \(1\leqslant d_1< \cdots < d_s \)是整数,是 \({\mathbb P}^2\) 中的一个点集,它具有一些代数和几何性质。例如,\({\mathbb P}^2\) 中所有\(\Bbbk \)配置的分级贝蒂数和希尔伯特函数都是由\((d_1,\ldots ,d_s)\)类型决定的。然而,在 \({\mathbb P}^2\) 中,同一类型的 \(\Bbbk \)配置的沃尔德施密特常数可能会不同。在本文中,我们发现类型为((d_1,\ldots ,d_s)\)的\(d_1ge s\ge 1\) 中的\(\Bbbk \)-配置的沃尔德施密特常数为 s。然后,我们来处理(a)、(a, b)和(a, b, c)类型的\({\mathbb P}^2\)中带有\(a\ge 1\) 的标准\(\Bbbk\)配置的沃尔德施密特常数。特别是,我们证明了在(1, b, c)类型的({\mathbb P}^2\)中具有(c\ge 2b+2\)的标准(\Bbbk \)配置的沃尔德施密特常数不依赖于c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Waldschmidt constant of a standard $$\Bbbk $$ -configuration in $${\mathbb P}^2$$

The Waldschmidt constant of a standard $$\Bbbk $$ -configuration in $${\mathbb P}^2$$

A \(\Bbbk \)-configuration of type \((d_1,\ldots ,d_s)\), where \(1\leqslant d_1< \cdots < d_s \) are integers, is a set of points in \({\mathbb P}^2\) that has a number of algebraic and geometric properties. For example, the graded Betti numbers and Hilbert functions of all \(\Bbbk \)-configurations in \({\mathbb P}^2\) are determined by the type \((d_1,\ldots ,d_s)\). However the Waldschmidt constant of a \(\Bbbk \)-configuration in \({\mathbb P}^2\) of the same type may vary. In this paper, we find that the Waldschmidt constant of a \(\Bbbk \)-configuration in \({\mathbb P}^2\) of type \((d_1,\ldots ,d_s)\) with \(d_1\ge s\ge 1\) is s. Then we deal with the Waldschmidt constants of standard \(\Bbbk \)-configurations in \({\mathbb P}^2\) of type (a), (ab), and (abc) with \(a\ge 1\). In particular, we prove that the Waldschmidt constant of a standard \(\Bbbk \)-configuration in \({\mathbb P}^2\) of type (1, bc) with \(c\ge 2b+2\) does not depend on c.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信