Battula Nancharaiah, Kiran Chand Ravi, Ajeet Kumar Srivastava, K. Arunkumar, Shams Tabrez Siddiqui, M. R. Arun
{"title":"数据科学和人工智能支持的 6G 无线通信网络分析","authors":"Battula Nancharaiah, Kiran Chand Ravi, Ajeet Kumar Srivastava, K. Arunkumar, Shams Tabrez Siddiqui, M. R. Arun","doi":"10.3103/s0735272723050059","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Current networks (such as 4G and the forthcoming 5G networks) may not be capable of fully congregating quickly emerging traffic strains due to the proliferation of smart fatal, infrastructures and the explosion of diverse applications with varying necessities. As a result, 6G network research has already seen participation from both the private sector and the academic community. Recently, an innovative paradigm has emerged for the intelligent design and optimization of 6G networks based on the combination of artificial intelligence (AI) and data science (DS). Therefore, this article proposes an AI-enabled architecture for 6G networks, which is alienated into four layers: intelligent sensing, data analytics, intelligent control, and smart application, to realize patterns sighting, smart resource management, automatic network adjustment, and intelligent service provisioning. We go over the uses of DS&AI methods in 6G networks, such as AI-enhanced mobile edge computing, intelligent mobility, and smart-spectrum management, and how to implement these methods to maximize the network’s performance. We also emphasize key areas for future study and clarifications for AI-enabled 6G networks, together with computational efficiency, algorithm resilience, hardware development, and energy management.</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Data Science and AI-enabled 6G Wireless Communication Networks\",\"authors\":\"Battula Nancharaiah, Kiran Chand Ravi, Ajeet Kumar Srivastava, K. Arunkumar, Shams Tabrez Siddiqui, M. R. Arun\",\"doi\":\"10.3103/s0735272723050059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Current networks (such as 4G and the forthcoming 5G networks) may not be capable of fully congregating quickly emerging traffic strains due to the proliferation of smart fatal, infrastructures and the explosion of diverse applications with varying necessities. As a result, 6G network research has already seen participation from both the private sector and the academic community. Recently, an innovative paradigm has emerged for the intelligent design and optimization of 6G networks based on the combination of artificial intelligence (AI) and data science (DS). Therefore, this article proposes an AI-enabled architecture for 6G networks, which is alienated into four layers: intelligent sensing, data analytics, intelligent control, and smart application, to realize patterns sighting, smart resource management, automatic network adjustment, and intelligent service provisioning. We go over the uses of DS&AI methods in 6G networks, such as AI-enhanced mobile edge computing, intelligent mobility, and smart-spectrum management, and how to implement these methods to maximize the network’s performance. We also emphasize key areas for future study and clarifications for AI-enabled 6G networks, together with computational efficiency, algorithm resilience, hardware development, and energy management.</p>\",\"PeriodicalId\":52470,\"journal\":{\"name\":\"Radioelectronics and Communications Systems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelectronics and Communications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0735272723050059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0735272723050059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Analysis of Data Science and AI-enabled 6G Wireless Communication Networks
Abstract
Current networks (such as 4G and the forthcoming 5G networks) may not be capable of fully congregating quickly emerging traffic strains due to the proliferation of smart fatal, infrastructures and the explosion of diverse applications with varying necessities. As a result, 6G network research has already seen participation from both the private sector and the academic community. Recently, an innovative paradigm has emerged for the intelligent design and optimization of 6G networks based on the combination of artificial intelligence (AI) and data science (DS). Therefore, this article proposes an AI-enabled architecture for 6G networks, which is alienated into four layers: intelligent sensing, data analytics, intelligent control, and smart application, to realize patterns sighting, smart resource management, automatic network adjustment, and intelligent service provisioning. We go over the uses of DS&AI methods in 6G networks, such as AI-enhanced mobile edge computing, intelligent mobility, and smart-spectrum management, and how to implement these methods to maximize the network’s performance. We also emphasize key areas for future study and clarifications for AI-enabled 6G networks, together with computational efficiency, algorithm resilience, hardware development, and energy management.
期刊介绍:
Radioelectronics and Communications Systems covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.