{"title":"基于被动性的微电网滑模控制器设计(考虑延迟和执行器饱和度","authors":"Anirban Sengupta, Dushmanta Kumar Das","doi":"10.1007/s40998-024-00741-x","DOIUrl":null,"url":null,"abstract":"<p>A passivity based sliding mode controller structure is proposed in this paper for controlling the voltage and frequency of a microgrid for both islanded and grid connected mode. Effect of communication channel delay and actuator saturation is also considered. A sliding mode control law is derived in such a way that the overall system become passive. By selecting the appropriate Lyapunov function, the necessary criterion for the system to become passive is developed in terms of inequality. The usefulness of the designed controller is verified with the help of a three phase Subnetwork 1 of CIGRE benchmark medium voltage distribution network. The efficacy of the designed sliding mode based controller is verified for both grid connected and islanded mode. The simulation is performed in MATLAB/SIMULINK platform and the real-time simulation is performed using OPAL-RT.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A passivity based sliding mode controller design for microgrid considering delay and actuator saturation\",\"authors\":\"Anirban Sengupta, Dushmanta Kumar Das\",\"doi\":\"10.1007/s40998-024-00741-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A passivity based sliding mode controller structure is proposed in this paper for controlling the voltage and frequency of a microgrid for both islanded and grid connected mode. Effect of communication channel delay and actuator saturation is also considered. A sliding mode control law is derived in such a way that the overall system become passive. By selecting the appropriate Lyapunov function, the necessary criterion for the system to become passive is developed in terms of inequality. The usefulness of the designed controller is verified with the help of a three phase Subnetwork 1 of CIGRE benchmark medium voltage distribution network. The efficacy of the designed sliding mode based controller is verified for both grid connected and islanded mode. The simulation is performed in MATLAB/SIMULINK platform and the real-time simulation is performed using OPAL-RT.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00741-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00741-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A passivity based sliding mode controller design for microgrid considering delay and actuator saturation
A passivity based sliding mode controller structure is proposed in this paper for controlling the voltage and frequency of a microgrid for both islanded and grid connected mode. Effect of communication channel delay and actuator saturation is also considered. A sliding mode control law is derived in such a way that the overall system become passive. By selecting the appropriate Lyapunov function, the necessary criterion for the system to become passive is developed in terms of inequality. The usefulness of the designed controller is verified with the help of a three phase Subnetwork 1 of CIGRE benchmark medium voltage distribution network. The efficacy of the designed sliding mode based controller is verified for both grid connected and islanded mode. The simulation is performed in MATLAB/SIMULINK platform and the real-time simulation is performed using OPAL-RT.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.