将 Fe3O4 纳米颗粒封装在从乳化沥青中提取的石墨化和面内多孔碳纳米笼中,用于高性能锂离子电池负极

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dandan Hu, Linxiu Sui, Jinjin Shi, Dongfeng Li, Yuxuan Zhang, Yimeng Li, Bingbing Hu, Xiaoya Yuan
{"title":"将 Fe3O4 纳米颗粒封装在从乳化沥青中提取的石墨化和面内多孔碳纳米笼中,用于高性能锂离子电池负极","authors":"Dandan Hu,&nbsp;Linxiu Sui,&nbsp;Jinjin Shi,&nbsp;Dongfeng Li,&nbsp;Yuxuan Zhang,&nbsp;Yimeng Li,&nbsp;Bingbing Hu,&nbsp;Xiaoya Yuan","doi":"10.1007/s11706-024-0687-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, C@Fe<sub>3</sub>O<sub>4</sub> composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe<sub>3</sub>O<sub>4</sub>-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g<sup>−1</sup> after 100 cycles at 0.1 A·g<sup>−1</sup> and a high capacity of 531.1 mA·h·g<sup>−1</sup> after 300 cycles at 1 A·g<sup>−1</sup>, much better than those of bulk carbon/Fe<sub>3</sub>O<sub>4</sub> prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe<sub>3</sub>O<sub>4</sub> nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe<sub>3</sub>O<sub>4</sub>, but also suppress the volume expansion of Fe<sub>3</sub>O<sub>4</sub> effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4 nanoparticles encapsulated in graphitized and in-plane porous carbon nanocages derived from emulsified asphalt for a high-performance lithium-ion battery anode\",\"authors\":\"Dandan Hu,&nbsp;Linxiu Sui,&nbsp;Jinjin Shi,&nbsp;Dongfeng Li,&nbsp;Yuxuan Zhang,&nbsp;Yimeng Li,&nbsp;Bingbing Hu,&nbsp;Xiaoya Yuan\",\"doi\":\"10.1007/s11706-024-0687-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, C@Fe<sub>3</sub>O<sub>4</sub> composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe<sub>3</sub>O<sub>4</sub>-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g<sup>−1</sup> after 100 cycles at 0.1 A·g<sup>−1</sup> and a high capacity of 531.1 mA·h·g<sup>−1</sup> after 300 cycles at 1 A·g<sup>−1</sup>, much better than those of bulk carbon/Fe<sub>3</sub>O<sub>4</sub> prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe<sub>3</sub>O<sub>4</sub> nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe<sub>3</sub>O<sub>4</sub>, but also suppress the volume expansion of Fe<sub>3</sub>O<sub>4</sub> effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0687-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0687-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以乳化沥青为碳源,柠檬酸铁铵为过渡金属氧化物前驱体,NaCl为模板,通过典型的模板法制备了C@Fe3O4复合材料。作为锂离子电池的负极,优化的 C@Fe3O4-1:2 复合材料在 0.1 A-g-1 的条件下循环 100 次后显示出 856.6 mA-h-g-1 的优异可逆容量,在 1 A-g-1 的条件下循环 300 次后显示出 531.1 mA-h-g-1 的高容量,远远优于不含 NaCl 制备的块状碳/Fe3O4。如此出色的循环性能主要得益于其精心设计的结构:在热解过程中由柠檬酸铁铵生成的 Fe3O4 纳米颗粒被均匀地包裹在由石油沥青制成的石墨化平面多孔碳纳米笼中。纳米碳笼不仅提高了 Fe3O4 的导电性,而且在充放电循环过程中有效抑制了 Fe3O4 的体积膨胀,从而提供了强大的电化学稳定性。这项工作实现了低成本石油沥青的高附加值利用,并可扩展到其他过渡金属氧化物基阳极的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fe3O4 nanoparticles encapsulated in graphitized and in-plane porous carbon nanocages derived from emulsified asphalt for a high-performance lithium-ion battery anode

In this work, C@Fe3O4 composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe3O4-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g−1 after 100 cycles at 0.1 A·g−1 and a high capacity of 531.1 mA·h·g−1 after 300 cycles at 1 A·g−1, much better than those of bulk carbon/Fe3O4 prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe3O4 nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe3O4, but also suppress the volume expansion of Fe3O4 effectively during the charge–discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信