用单调路径和其他结构平铺边缘有序图

Pub Date : 2024-06-07 DOI:10.1137/23m1572519
Igor Araujo, Simón Piga, Andrew Treglown, Zimu Xiang
{"title":"用单调路径和其他结构平铺边缘有序图","authors":"Igor Araujo, Simón Piga, Andrew Treglown, Zimu Xiang","doi":"10.1137/23m1572519","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1808-1839, June 2024. <br/> Abstract. Given graphs [math] and [math], a perfect [math]-tiling in [math] is a collection of vertex-disjoint copies of [math] in [math] that together cover all the vertices in [math]. The study of the minimum degree threshold forcing a perfect [math]-tiling in a graph [math] has a long history, culminating in the Kühn–Osthus theorem [D. Kühn and D. Osthus, Combinatorica, 29 (2009), pp. 65–107] which resolves this problem, up to an additive constant, for all graphs [math]. In this paper we initiate the study of the analogous question for edge-ordered graphs. In particular, we characterize for which edge-ordered graphs [math] this problem is well-defined. We also apply the absorbing method to asymptotically determine the minimum degree threshold for forcing a perfect [math]-tiling in an edge-ordered graph, where [math] is any fixed monotone path.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiling Edge-Ordered Graphs with Monotone Paths and Other Structures\",\"authors\":\"Igor Araujo, Simón Piga, Andrew Treglown, Zimu Xiang\",\"doi\":\"10.1137/23m1572519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1808-1839, June 2024. <br/> Abstract. Given graphs [math] and [math], a perfect [math]-tiling in [math] is a collection of vertex-disjoint copies of [math] in [math] that together cover all the vertices in [math]. The study of the minimum degree threshold forcing a perfect [math]-tiling in a graph [math] has a long history, culminating in the Kühn–Osthus theorem [D. Kühn and D. Osthus, Combinatorica, 29 (2009), pp. 65–107] which resolves this problem, up to an additive constant, for all graphs [math]. In this paper we initiate the study of the analogous question for edge-ordered graphs. In particular, we characterize for which edge-ordered graphs [math] this problem is well-defined. We also apply the absorbing method to asymptotically determine the minimum degree threshold for forcing a perfect [math]-tiling in an edge-ordered graph, where [math] is any fixed monotone path.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1572519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1572519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》第 38 卷第 2 期第 1808-1839 页,2024 年 6 月。 摘要。给定图[math]和[math],[math]中的完美[math]-簇是[math]中[math]的顶点相交副本的集合,这些副本共同覆盖了[math]中的所有顶点。关于图[math]中强制完美[math]-tiling的最小度阈值的研究由来已久,库恩-奥斯特胡斯定理(Kühn-Osthus theorem)[D. Kühn and D. Osthus, Combinatorica, 29 (2009), pp.]在本文中,我们开始研究边缘有序图的类似问题。特别是,我们描述了对于哪些边缘有序图[math],这个问题是定义明确的。我们还应用吸收法渐近地确定了在边缘有序图中强迫完美[math]倾斜的最小度阈值,其中[math]是任何固定的单调路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tiling Edge-Ordered Graphs with Monotone Paths and Other Structures
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1808-1839, June 2024.
Abstract. Given graphs [math] and [math], a perfect [math]-tiling in [math] is a collection of vertex-disjoint copies of [math] in [math] that together cover all the vertices in [math]. The study of the minimum degree threshold forcing a perfect [math]-tiling in a graph [math] has a long history, culminating in the Kühn–Osthus theorem [D. Kühn and D. Osthus, Combinatorica, 29 (2009), pp. 65–107] which resolves this problem, up to an additive constant, for all graphs [math]. In this paper we initiate the study of the analogous question for edge-ordered graphs. In particular, we characterize for which edge-ordered graphs [math] this problem is well-defined. We also apply the absorbing method to asymptotically determine the minimum degree threshold for forcing a perfect [math]-tiling in an edge-ordered graph, where [math] is any fixed monotone path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信