Megha Patel, Nimish Magre, Himanshi Motwani, Nik Bear Brown
{"title":"利用 scRNA-seq 数据中的原始计数矩阵进行单细胞 RNA 注释的机器学习、统计方法和人工智能研究进展","authors":"Megha Patel, Nimish Magre, Himanshi Motwani, Nik Bear Brown","doi":"arxiv-2406.05258","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to\nanalyze gene expression at the resolution of individual cells, providing\nunprecedented insights into cellular heterogeneity and complex biological\nsystems. This paper reviews various advanced computational and machine learning\ntechniques tailored for the analysis of scRNA-seq data, emphasizing their roles\nin different stages of the data processing pipeline.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Machine Learning, Statistical Methods, and AI for Single-Cell RNA Annotation Using Raw Count Matrices in scRNA-seq Data\",\"authors\":\"Megha Patel, Nimish Magre, Himanshi Motwani, Nik Bear Brown\",\"doi\":\"arxiv-2406.05258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to\\nanalyze gene expression at the resolution of individual cells, providing\\nunprecedented insights into cellular heterogeneity and complex biological\\nsystems. This paper reviews various advanced computational and machine learning\\ntechniques tailored for the analysis of scRNA-seq data, emphasizing their roles\\nin different stages of the data processing pipeline.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances in Machine Learning, Statistical Methods, and AI for Single-Cell RNA Annotation Using Raw Count Matrices in scRNA-seq Data
Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to
analyze gene expression at the resolution of individual cells, providing
unprecedented insights into cellular heterogeneity and complex biological
systems. This paper reviews various advanced computational and machine learning
techniques tailored for the analysis of scRNA-seq data, emphasizing their roles
in different stages of the data processing pipeline.