{"title":"$$epsilon$$-BBS和申斯泰德插入算法的一般化","authors":"Katsuki Kobayashi, Satoshi Tsujimoto","doi":"10.1007/s10801-024-01338-7","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\(\\epsilon \\)</span>-BBS is the family of solitonic cellular automata obtained via the ultradiscretization of the elementary Toda orbits, which is a parametrized family of integrable systems unifying the Toda equation and the relativistic Toda equation. In this paper, we derive the <span>\\(\\epsilon \\)</span>-BBS with many kinds of balls and give its conserved quantities by the Schensted insertion algorithm which is introduced in combinatorics. To prove this, we extend birational transformations of the continuous elementary Toda orbits to the discrete hungry elementary Toda orbits.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of the $$\\\\epsilon $$ -BBS and the Schensted insertion algorithm\",\"authors\":\"Katsuki Kobayashi, Satoshi Tsujimoto\",\"doi\":\"10.1007/s10801-024-01338-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span>\\\\(\\\\epsilon \\\\)</span>-BBS is the family of solitonic cellular automata obtained via the ultradiscretization of the elementary Toda orbits, which is a parametrized family of integrable systems unifying the Toda equation and the relativistic Toda equation. In this paper, we derive the <span>\\\\(\\\\epsilon \\\\)</span>-BBS with many kinds of balls and give its conserved quantities by the Schensted insertion algorithm which is introduced in combinatorics. To prove this, we extend birational transformations of the continuous elementary Toda orbits to the discrete hungry elementary Toda orbits.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01338-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01338-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalization of the $$\epsilon $$ -BBS and the Schensted insertion algorithm
The \(\epsilon \)-BBS is the family of solitonic cellular automata obtained via the ultradiscretization of the elementary Toda orbits, which is a parametrized family of integrable systems unifying the Toda equation and the relativistic Toda equation. In this paper, we derive the \(\epsilon \)-BBS with many kinds of balls and give its conserved quantities by the Schensted insertion algorithm which is introduced in combinatorics. To prove this, we extend birational transformations of the continuous elementary Toda orbits to the discrete hungry elementary Toda orbits.